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Abstract

The U.S. electric-power industry, comprising the generation, transmission, and distribution
systems throughout the country, has been described as the "greatest machine ever created". This
machine is an integral part of the national infrastructure. Its continued good performance is vital
to the success of the U.S. economy, to the pursuit of environmental and health goals, and to the
assurance of safety and security.

Dramatic changes are now taking place in the U.S. electric-power industry as deregulation is
implemented and as competition is introduced in providing electric power. These changes offer
the possibility of lower prices for electric power and increased supply, with minimal increases in
associated capital facilities. To achieve these goals in a competitive environment, the industry
will exploit fully the capabilities of modern technology. To succeed in such exploitation, the
industry will require new measurement capability.

This document describes the changes taking place in the industry. These changes are translated
into technical needs associated with industry’s response and then into the associated measurement
needs for which NIST assistance will be required. The resulting measurement needs are grouped
into categories by priority. The highest-priority needs are generally those with the greatest
prospective economic impact.

This document focuses principally on measurement capability for theelectrical quantities
associated with thetransmission and distributionof electric power. Special emphasis is placed on
those measurement needs requiring the assistance of the National Institute of Standards and
Technology (NIST). There are also important measurement needs associated with the efficient
generation and use of electricity. They are the subject of other inquiries now underway at NIST.

The assessment presented here reflects NIST’s current understanding of the key measurement
needs, based on interactions with industry, universities, and government during the development
of this document. Through publication of this document, NIST solicits additional feedback on the
measurement needs of this industry. NIST’s purpose is to assure that its resources are applied as
effectively as possible in support of the U.S. electric-power industry and its customers nationwide.
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Preface vii

PREFACE

Purpose

This document describes the dramatic changes taking place in the electric-power industry as it
undergoes deregulation. These changes are translated into technical needs and then into the associated
measurement needs for which NIST assistance will be required. Comments on this assessment are
invited and will aid NIST in focusing it resources on the areas of highest priority to the industry and
its customers. These areas are generally the ones with the greatest prospective economic impact.
While the focus here is principally on the measurement needs resulting from the major changes taking
place in the industry, additional requirements of a long-standing nature are also discussed.

Scope

The scope of this analysis may be characterized by describing both the industry covered and the types
of needs addressed.

With regard to the industry covered, there are multiple participants of importance with multiple roles:

producers of electric power
as equipment buyers
as fuel buyers
as electricity sellers
as service sellers

end users of electric power
as electricity buyers
as electrical and electronic equipment buyers

electrical-equipment manufacturers
as materials buyers
as equipment sellers

This analysis focuses on the producers of electric power. They include investor-owned (private)
utilities, government and cooperative utilities, and independent power producers. Together, they are
considered here as theelectric-power industry. Also addressed are the interactions of the electric-
power industry with the other entities above.

The electrical-equipment manufacturers, which comprise the electrical-equipment industry, represent
another important area for NIST to examine. These manufacturers supply equipment for the electric-
power industry and for many other industries, such as the electronics industry, the building industry,
the appliance industry, and the automotive industry. So the products of the electrical-equipment
manufacturers are essential both to providing electricity and to applying electricity. The electrical-
equipment industry, as it relates to the electric-power industry, is addressed here to a limited degree.
The authors contemplate a follow-on effort focused specifically on the electrical-equipment industry
and its measurement needs.
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With regard to the types of needs addressed, this document focuses on measurement needs, including
measurement methods, measurement reference standards, materials reference data, and calibrations
services. Measurement needs associated with any technology supporting the electric-power industry
have been considered. However, the focus of this analysis is onelectrical quantitiesimportant to the
transmission and distributionof electric power. Measurement needs associated with the efficient
generation and use of electricity may be just as important. They are the subject of other inquiries
underway at NIST.

Transmissiondescribes the transfer of electric power from the generating sources at very high
voltages, from 22,000 volts up to 800,000 volts, to central points of distribution or to other electric
utilities [1]. Distribution describes the transfer of electricity from the central points of distribution
to end users at voltages under 22,000 volts.

Approach

The approach taken by the authors has three steps: (1) identify the driving forces behind the changes
in the electric-power industry; (2) translate those driving forces into the technical needs that arise in
responding to the forces; (3) translate those technical needs into the specific measurement support
needed from NIST for industry’s successful response. These three steps are addressed, one each, in
the three chapters of this document.

This approach -- of moving from the broad driving forces to the specific measurement needs -- has
the advantage of seeing the industry as it sees itself. Such an approach facilitates industry review and
comment. It also facilitates identifying the highest priority needs by keeping motivation associated
with response.

The complexity of the electric-power industry was immediately evident in the first stage of this
process: the identification of the driving forces. The chain from cause to effect was not simple. For
example, in some cases, one driving force (such as government deregulation of the utilities) gave rise
to another driving force (such as economic competitive pressure). Nevertheless, the authors
endeavored to create an order that kept cause ahead of effect as much as possible.

A variety of methods were employed to identify the technical needs and the implications for NIST,
including: telephone discussions with industry representatives, face-to-face meetings, participation
in industry conferences, publications and other reports, and discussions with NIST colleagues
throughout the agency. There were many cross currents; for example, a given implication for NIST
often appeared as a consequence of more than one driving force or technical need. These cross
currents are reflected in this document.

From the broader list of implications for NIST, the nine most critical long-term needs and the three
most critical short-term needs, associated with the transmission and distribution of electric power, are
identified and discussed. NIST’s current efforts, and especially those of the Electricity Division
within NIST, are described. Both the importance of the work being conducted and the importance
of the work remaining are described.

It should be noted that the industry itself is uncertain about the details of the changes that it will
undergo in the next one, five, and ten years. Therefore, continued close contact with the industry,
of the type employed during the preparation of this document, will be necessary to maintain a proper
perspective on the needs and the associated priorities required for NIST’s response.
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Preface ix

Audience and Technical Level

An effort has been made to make this document accessible to a broad audience, since readers from
policy, management, and technical fields may be interested. However, the authors faced major
challenges in handling the number of technical concepts inherent in a discussion of the measurement
needs of the electric-power industry. The authors settled on the following approach. For Chapter
One, addressing the broad driving forces underlying the changes in the industry, key technical
concepts have been explained in the hope that the overall picture can be communicated successfully
to all readers. For Chapter Two, on technical needs, the number of technical concepts that merited
explanation was greater than could be accommodated in acceptable space. As a result, the authors
included explanatory material selectively, that is, for the most fundamental technical concepts only.
The authors hope that this approach will make this chapter accessible in the main to all readers.
Chapter Three, on the implications for NIST, does not introduce new technical concepts, so readers
who have braved Chapter Two will find themselves at home in Chapter Three.

NIST’s Role

NIST focuses on developing measurement capability that is beyond the reach of the broad range of
individual companies and that will have high economic impact for the nation. Companies seek
NIST’s help for several reasons. The companies may need NIST’s special measurement expertise,
which extends across many fields of technology, for the development of new measurement capability
or for the comparison or validation of existing measurement capability. The companies may need
NIST’s impartiality, which enables NIST’s measurement solutions to be adopted by all companies
in an industry with confidence. The companies may need NIST’s imprimatur as the lead-agency of
the U.S. Government for measurements, which enables NIST to support U.S. interests when
measurement barriers bar U.S. products from foreign markets. Further information on NIST’s role
is provided, in detail, in Chapter 2 ofMeasurements for Competitiveness in Electronics[2].
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INTRODUCTION

The U.S. electric-power industry is one of the largest industries in the United States. Electricity sales

Table 1: LARGEST U.S. MANUFACTURING
INDUSTRIES (1994)

Industry Shipments Employment
($billions) (thousands)

Electronics 321 1,710
Chemical 316 842
Automotive 297 934
Petroleum Refining 123 75(1992)

Aerospace 95 552

are $208 billion (1995) [3], and the industry employs 441 thousand people (1995) [4]. If the
electric-power industry is compared with the manufacturing industries, its output falls between the
third largest (automotive) and fourth largest (petroleum refining), as shown in Table 1 [5]. Further,
electricity is an essentialingredient in the vast
majority of products. About 1.3 percent of the value
of the products of all manufacturing industries in the
United States is attributable to the cost of the
electricity used in making them (1994) [6].

Installed Capacity and Consumption

The United States has the largest installed capacity
for generating electricity of all countries in the
world. This capacity is more than three times that of
each of the next two most prominent countries in rank order; they are Japan and the Russian
Federation. They have nearly equal capacity. The U.S. capacity is 770 gigawatts, or 770x109 watts
(1994) [7].

The United States is third among the countries in the world in its consumption of electricity per
person [8]. Canada is first and Sweden is second, with 57 and 30 percent higher consumption,
respectively, than the United States. U.S. consumption is 13 megawatt-hours [9], or 13x106 watt-
hours, per person per year (1994) [10].

Changes in the Industry

This industry experienced rapid growth after its inception, followed by more steady growth. Today
the industry is undergoing the most dramatic changes in over a century. These changes are
organizational, economic, and technical in nature. It has recently been said that the "electric utilities
are now the world’s most turbulent industry" [11].

Because of the impracticality of having more than one electric-power provider in a given area, and
because of patterns of historical development in the industry, the electric-power industry evolved into
a system of regulated monopolies in the 1930s. In most cases this meant that the same electric
utilities that generated electricity also transmitted and delivered the electricity to the customers. This
approach is now being reconsidered. Although the details remain to be worked out, the utilities are
in the process of being deregulated. The aim is to foster competition that will provide the most value
for the price of electric service in response to the customers’ needs. In effect, the utilities are being
asked to make a transition from traditional vertically integrated organizations to new horizontally
integrated ones. As the utilities look to streamline their operations, they are making efforts to
increase the value of, and expand, the services that they provide. In this effort they are applying new
technologies to their operating systems. These new technologies include optical sensors, power
electronics, and microelectronic controllers, among others.

All of these changes are giving rise to a broad spectrum of needs for supporting measurement
capability, and, therefore, for NIST’s assistance, with high levels of prospective ecomomic impact.
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2 Introduction

These needs and the background for them, with focus on the electrical measurement needs related to
the transmission and distribution of electric power, are the subject of this document.
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CHAPTER ONE: DRIVING FORCES

At the most general level -- the societal level -- the driving forces behind the changes in the electric-
power industry, and their equipment suppliers in the electrical-equipment industry, take several
principal forms. These driving forces can be divided into three groups, shown below. Those that are
especially closely related have been grouped together and will be treated together in subsequent
sections.

(1) Economic growth, economic efficiency, international competitiveness
(2) Environmental quality, health
(3) Safety, security

For the electrical-equipment industry, the driving forces in the first group have the typical
interrelationship found today in many manufacturing industries. However, they have special
importance with respect to economic leverage because electricity is a factor in the cost of the products
of virtually every other industry. For example, General Motors estimates that the cost of electricity
used in assembling an automobile averages $190 per vehicle, and that the inclusion of the cost of
electricity used in the production of parts and materials yields $700 per vehicle [12]. Therefore,
a significant reduction in the price of electricity represents a substantial savings and a potentially
important improvement in the competitiveness of many product lines, and even entire U.S. industries.

The second group of forces (environmental quality and health) and the third group (safety and
security) have historically represented social-impact aspects of an industry’s activity. That is, they
reflect how the industry’s economic activity relates to society’s well-being. However, as global
environmental issues, safety, and other social concerns have received more attention and have become
the target of increased legislation, these forces have increasingly affected the ability of an industry
to compete [13].

In the discussion that follows, each of these three groups of driving forces is broken down into
subordinate elements for closer consideration.

1. ECONOMIC GROWTH, EFFICIENCY, AND COMPETITIVENESS

1.1 Government Driving Forces

1.1.1 Deregulation of the utility industry

The deregulation of the electric utilities began essentially in 1978 when the passage of the Public
Utility Regulatory Policies Act (PURPA) required the electric utilities to purchase electricity from
independent power producers. Deregulation activities continued in the 1980s, when the U.S.
Government actively, and ultimately successfully, pushed for the break-up of AT&T which was the
world's largest integrated utility. This action was soon followed by the deregulation of the natural
gas industry by the Federal Energy Regulatory Commission (FERC), permitting more choices for
local gas utilities and large gas customers.

Pressure for similar deregulation in the transmission segment of the electric utilities then increased
due to the wide disparities in electricity prices between different parts of the country. Residential
rates for electricity, for example, range from about 3¢ per kilowatt-hour in parts of the Pacific
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4 Chapter One: Driving Forces

Northwest to about 16¢ per kilowatt-hour in the New York City [14]. Pressure to deregulate local
utilities at the state level has been particularly strong in some states, such as Illinois, where rates
charged by neighboring utilities can differ by as much as a factor of two. In this environment, and
at a time when new, inexpensive sources of electricity generation were being developed and marketed,
the 1992 National Energy Policy Act (NEPA) was passed. NEPA provided for increased competition
in the sale of electric power [15, 16]. As characterized inIndustry Week[17], NEPA:
(1) authorized municipalities to purchase electric power from the provider of their choice; (2) required
local utilities towheel in(transmit) this power over their electrical grid systems; and (3) required the
local utilities to buy available electricity from independent power producers. [Wheeling is the
transmission of large amounts of electric power over long distances among a number of independent
sources of electricity.] In addition, NEPA encouraged state regulators to "foster competition and
greater reliance on market mechanisms" [17]. In April 1996, federal regulators enacted rules
expanding these requirements by mandating that the utilities allow their competitors to use the
utilities’ own transmission lines at competitive rates [18].

While NEPA opened the door to increased competition within the electric-power industry, it by no
means completely determined the extent of this new competitive environment. In fact, the industry
has been described as currently residing in an undefined "twilight zone" between a regulated
monopoly and a fully competitive state [15]. This mixed state is reflected in the following
combination of requirements: the utilities must still provide electricity to all customers; but they must
also provide transmission and distribution access to independent power producers and competitors.
Nevertheless, customers of the utilities are still captive to a significant extent, even though they now
have some additional choices, such as generating their own electricity or attempting to force wheeling.

While the regulatory state of the utilities is somewhat undefined at present, the expected result of
NEPA is the end of monopoly control for the affected power producers, the end of price setting based
on the demonstration of increased costs to regulatory bodies, and the emergence of price competition
in the sale of electric power. Fully implemented, NEPA could enable customers to choose from
whom they buy their electricity, and the level of service that they require. California moved toward
this possibility in April 1994 when the California Public Utilities Commission proposed new
regulations allowing all electric-power consumers, including homeowners, to select their supplier by
2002 [19]. Illinois is considering similar regulations that would go into effect in 2000 [20].

The implementation of such deregulation is seen by many as being achievable only if the utilities are
unbundled, that is, if the basic services currently offered by utilities (generation, transmission, and
distribution) are separated into individual companies. Each company would offer a range of possible
customer service options including varying degrees of power quality, back-up, maintenance, and
guaranteed reliability [15]. Something similar to this arrangement was recently implemented in the
centralized, government-owned electric utility in the United Kingdom. In 1990 the United Kingdom’s
system was restructured and partially privatized to form separate generation, transmission, and
distribution companies. Under the new system, medium-to-large users of electricity have been able
to select their electricity suppliers since 1994, and all customers should have this capability by
1998 [21]. While it is still too early to tell if the increased competitive arrangement in the United
Kingdom has resulted in lower consumer prices, it is apparent that this arrangement of unbundled
utilities does work. This change has also led to purchases of regional utilities by foreign companies.
It should be noted, however, that the present arrangement in the United Kingdom is far from
unregulated. In fact, the United Kingdom’s system represents perhaps the most complex regulatory
system in the world. This complexity results from the effort to ensure that the independent companies
which make up the utility system provide fair and reliable delivery of electrical power to the country.

Measurement Support for the U.S. Electric-Power Industry / NIST



Section 1. Economic Growth, Efficiency, and Competitiveness 5

One of the most challenging aspects of applying a similar system to the United States is related to
the vast and complex transmission and distribution system in place in North America. Presently,
there are more than 3000 independent entities (owned primarily by utilities) that make up the
transmission system in the United States and Canada [22]. This system comprises 672,177 miles
(1995) of overhead high-voltage transmission lines operating at 22,000 volts or higher [23], and
has been referred to as the "greatest machine ever created" [14]. Adding to the complexity of the
situation is the fact that these systems are all designed to provide a support service, or foundation;
that is, they were never intended to make money independently. The questions of who owns and
controls this network is key to the future development of the competitive electrical system in the
United States.

Under the current operating system, wheeling is very complex. On the one hand, the sale of power
from one utility to another is common; nearly 40 percent of all electricity produced by utilities in the
United States is sold to another utility [19]. But on the other hand, the sale of electricity that must
flow through several transmission systems to complete the transaction is neither common nor routine.
The underlying difficulty is that power flow follows the laws of physics and not of contractual
obligations [24]. This makes it difficult to determine whose transmission system carried the power,
and who should be paid for the service. This difficulty is one of many technical, legal, and economic
challenges that must be addressed as the U.S. electric-power system moves toward deregulation.

The trend toward deregulation of the industry suggests that the utilities may soon be competing
against each other for the same customers. This implies that the utilities which offer acceptable
services at the lowest prices will be the most successful; these pressures will drive the development
of new and cheaper methods of generation, transmission, and distribution [25, 26]. Further, it
can be expected that a wide range of new services may be developed and offered to customers to
attract their business. Some of these services may include real-time pricing, demand-side
management, and guaranteed power delivery. These services, and their technical implications, will
be discussed in later sections of this document.

1.1.2 Reduction in Federal support for utility industry

The future of significant federal funding for projects supportive of the electric utilities is increasingly
in doubt. While DOE retains substantial programs in large-scale generators, such as nuclear power
and clean coal technologies, support for smaller-scale technologies is limited. Programs exist for fuel
cells ($50 million), photovoltaics ($60 million), and superconducting cables ($20 million) [27]; but
the entire DOE program on transmission and distribution technologies was zeroed out in 1995. The
National Science Foundation's entire budget for power-system engineering is only $3.5 million. This
reduction in support during a period when so many changes are taking place within the industry only
intensifies the need for adequate long-term measurement support from NIST.

1.2 Market Driving Forces

1.2.1 Emergence of independent power producers and separation of producers and distributors

The electric-power industry comprises generating facilities from three different categories of
ownership, as shown in Table 2 [28]. In terms of the percentage of electricity generated in the
United States, the most significant category by far is the investor-owned (private) electric utilities.
That category is followed in significance by the utilities owned outright by Federal, state, municipal
governments, or those financed by the U.S. Government’s Rural Electrification Administration and
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6 Chapter One: Driving Forces

cooperatively owned. The remainder are organizations Table 2: ELECTRIC ENERGY
GENERATED, BY FACILITY OWNERSHIP

(1975 and 1995)

Percentage
Owner 1975 1995

Investor 74 69
Government/Cooperatives 22 19
Independent 4 12

100 100

that are independently owned. They generate
electricity either as a main product, or as a by-product
of making something else. They are collectively
referred to by the Edison Electric Institute as thenon-
electric-utility-industry facilities. They will be referred
to here as the independent power producers. The data
in Table 2 capture only that part of their output that is
passed through the electric utilities. An example of an
independent power producer whose data would be
captured is a brick manufacturer that uses high-temperature exhaust heat from brick kilns to generate
electricity and then sells that electricity back to the utilities.

Table 2 indicates that the most significant change in the distribution of electric-energy generation
among the providers, from 1975 to 1995, is the growth of the independent power producers. The
electric energy that they supplied tripled over the period, as a percentage of the total. The resulting
growth in the number of suppliers of electricity, and the increased complexity that this growth
introduces into the power grid, heighten concerns about both the quality of the electric power
provided and the reliability and stability of the overall system.

The independent power producers are emerging as significant contributors to the electric-power
industry for at least two reasons: deregulation and economic efficiency. Each is discussed below.

Deregulation : The Public Utilities Regulatory Policies Act of 1978 encouraged the creation of
independent power produces [29], and an increasing number of them are entering the marketplace,
providing a diversity ofalternative energy sources. Unlike many of the conventional power
producers, they do not own distribution or transmission systems; but they do want access to them.
This change increasingly separates power producers from power distributors. It also underscores the
problems of operating existing transmission systems within their present physical constraints, as the
number and complexity of transmission services increase [29].

Economic efficiency of the provider : The development of highly efficient gas-turbine generators, combined
with relatively inexpensive sources of natural gas [15], has led to an end of the economies of scale
that the utilities have relied upon for many decades [29]. Previously, it was prohibitively expensive
for a private company to generate a moderate amount of electricity, when compared to the cost per
kilowatt-hour of electricity produced in the gigantic power plants of the utilities. Now small and
moderate size gas-turbine generators can produce electricity cleanly and safely at a cost equal to or
below that of many local utilities, resulting in a substantial increase in the number of independent
power producers competing with established utilities. In fact, independent power producers account
for half of all new power production capability that is being put into service in the United States [29].
Small, low-cost generators have also led many large electricity consumers to construct their own
primary generating plants on their production sites, thereby eliminating the need to buy electricity,
and in some cases allowing them to sell electricity back to the local utility at a profit [30].

1.2.2 Reduction of research and development expenditures by the electric utilities

The electric utilities, in the face of increasing competition, are cutting back on their investments in
internal research and development. They are also cutting back on the research and development that
they have collectively supported through the Electric Power Research Institute (EPRI) and other
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cooperative research organizations. EPRI's budget has fallen from $600 million to $450 million in
the last few years [27]. At this time, electric utilities commit less than 0.5 percent of sales revenues
to research, which is significantly lower than many other industries [14].

1.2.3 Change in role of EPRI

EPRI, the largest U.S. cooperative research organization dedicated to the electric-power industry, is
experiencing a number of interrelated changes that will affect both the quantity and type of
deliverables that it can provide in support of the electric utilities:

(a) reduced level of funding from its members and thus a smaller research program

(b) shift from a predominately long-range focus for research to a predominantly short-range
focus

(c) change in its method of financing for specific projects

More specifically, on point (c), EPRI’s core program will continue to be predominantly long-range
in character and will continue to be funded by all of its members; but the size of this core program
will be small. Its other research efforts, funded by subgroups of its members, will be larger than the
core program, and the outputs will be provided only to the funding subgroup. Additionally, further
break-ups, or unbundling of the utilities will increase the difficulties of EPRI in serving its members,
due to their increased diversity [25].

EPRI has historically addressed issues of environment, national productivity, public safety, and the
relationship between the utilities and the overall quality of life of their customers [25], in other words,
areas of research that are too big for any single utility to address effectively. It is reasonable to ask
whether these issues can be expected to be addressed by the individual utilities within the developing
competitive environment.

1.2.4 Control of capital costs for the utilities

Electrical power equipment is expensive. For example, the cost of a single power transformer may
exceed $500,000. The industry is, therefore, strongly motivated by economic forces to minimize
capital investments in at least two ways.

Extending system lifetimes : Many power systems are nearing the end of their design lifetimes. Replacing
part or all of these systems is very costly and in some cases, such as nuclear power plants, nearly
impossible due to regulatory requirements. For example, the regulatory requirements for
decommissioning a nuclear power plant can exceed the costs of operation. With increasing evidence
that many systems may be able to exceed their design lifetimes by considerable margins, the need
has arisen for methods to predict and monitor those extended lifetimes. There is a tremendous
economic incentive for the development of these methods. Diagnostic methods are currently being
developed for testing of power generators [31], cables for nuclear power plants [32], and other
electrical equipment, such as transformers and power cables.

Minimizing new construction : Minimizing the construction of new power stations and transmission systems,
while continuing to provide required services to a utility's customers, substantially improves the
competitiveness of the utility. This can be done in at least three ways:
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8 Chapter One: Driving Forces

(1) Limit the growth in demand for electricity through increased efficiency of end-use devices, such
as motors, lights, etc.[33]. Many utilities currently have demand-side management (DSM)
programs which encourage the use of energy-efficient equipment through some monetary incentive.
In fact, the American Public Power Association has referred to these types of programs as "the quiet
revolution" [34], because of the large number of utilities that are offering these programs [35].
The potential for saving of electricity by using energy-efficient equipment is quite large, and a
significant effort is being expended to accomplish this goal. For example, the city of Springfield,
Illinois is in the process of retrofitting all government-owned buildings with energy-efficient lighting,
reducing the demand for electricity by a full megawatt [36]; these savings benefit the taxpayer and
the local utility. The fact that 80 percent of all electricity in the United States is used for motors,
space conditioning (i.e., heating and air conditioning), lighting, and refrigeration [37], implies that
a concerted effort to improve the efficiency of equipment in these areas could provide significant
payoffs. The use of devices of increased energy efficiency is also beneficial to the environment, as
discussed later in this document.

(2) Reduce the extremes in demand through the limitation of peak loads since new power generating
systems are first required to cover new peak load.Reductions in peak loads can be aided by types
of demand-side management at homes and businesses, including real-time pricing (that is, charging
the customer what it really costs at that instant to provide the required electricity) and customer load
control by the utility (for example, the ability of the utility to temporarily turn off a customer's hot
water heater or air conditioner during peak hours). These types of programs are currently in their
infancy, but they are expanding rapidly. In 1992 the U.S. utilities spent over $2 billion on demand-
side management programs. That type of investment is expected to increase to over $30 billion by
the end of the decade [37]. Pacific Gas and Electric has stated that it expects to meet 75 percent of
its anticipated new demand by the year 2000 through demand-side management programs [38].
Real-time pricing (RTP) is one of the most promising new methods to lower peak electricity use, as
evidenced by the fact that 14 utilities have started RTP programs [4]. However, these programs are
presently limited by the fact that RTP requires interconnected power metering for the customers.
Such metering requires a significantly more developed communication system between the utility and
the customer than is presently available [39]. Such systems are currently practical only for a
utility's largest users.

(3) Achieve full utilization of all power delivery systems.This last item is most applicable to
transmission lines and distribution systems. Great economic benefit can be obtained by transmitting
power more efficiently through existing lines. Transmission systems now carry loads at 70 percent
or more of their capacity less than 20 percent of the time. A similar 70 percent or more capacity
utilization for distribution systems occurs less than 5 percent of the time [14]. It is possible for
existing power delivery systems to accommodate increases in total power delivered without increasing
their capacity limits. In addition, power delivery systems can be made more efficient by optimizing
their operation. Improvements will require new methods of power-flow control technology. A related
method is the implementation of artificial-intelligence systems that could control a transmission
network in such a way as to allow greater transmission capacity [40]. Also possible is the
operation of power equipment (such as generators and transmission lines) with reduced safety margins
for short periods of peak demand, but with corresponding reductions in allowed lifetimes [41].

1.2.5 Control of operating costs for the utilities

The pressure to reduce operating costs continues to have important effects on the utilities. Improved
efficiency can be pursued through improvements in generation, transmission, and distribution. This

Measurement Support for the U.S. Electric-Power Industry / NIST



Section 1. Economic Growth, Efficiency, and Competitiveness 9

emphasis has led to a new practice within utilities ofbenchmarkingtheir performance. Benchmarking
is the use of comparisons to other utilities to determine a given utility's competitive performance
levels [42]. The goal is to determine where a utility is performing efficiently, and where
improvement is needed. The development of these benchmarks is a continuing process, and is being
pursued aggressively by the utilities.

The marginal cost of producing power increases by 20 to 50 times during periods of peak demand
[19], so it is to the advantage of the consumer and the utility to reduce peak demand relative to
average demand. Therefore, significant improvements in the control of operating costs can be
achieved by reducing peak demands, which also minimizes the need for the construction of new
generating capacity, as discussed in the previous section. The effectiveness of this approach is
reflected in the estimated 2000 megawatts of load, or approximately 4 percent of peak demand, that
is shed on a voluntary basis by users during peak periods in the United Kingdom [43], where
demand-side management programs are being actively promoted.

The most common approach to cost savings currently being pursued by the utilities is reduction in
the number of personnel. Staff levels of utilities today are 10 to 20 percent lower than peak levels
in 1986, and reductions of 20 percent more [42] are expected to occur eventually in almost all job
categories. These continuing reductions imply a greater reliance on automation in the future, which
suggests the increasing need for highly developed communication networks, diagnostic controls, and
artificial intelligence systems.

1.2.6 Internationalization of markets for electric utilities

The 1992 Federal law that opened the domestic U.S. electricity market to competition, also allowed
U.S. utilities to make investments abroad more easily [29]. This freedom enables U.S. utilities to
purchase or operate utilities in foreign markets. Many U.S. utilities are embracing this opportunity
by buying profitable foreign utilities as a means of ensuring continuing profits and competitiveness
in spite of growing uncertainty in the domestic electricity market. The largest and most recent
acquisition of this sort is the purchase of Britain's South Western Electricity Board by The Southern
Company [44].

It is anticipated that by the year 2010, 47 percent of all new electricity usage will come from the
world's 100 developing countries [45]. This represents a huge potential for sales of equipment and
services, and represents a gigantic electricity market that is as yet untapped. In many cases, the U.S.
utilities are now utilizing their extensive experience and their reputations for reliable service in
acquiring contracts with foreign governments or regulatory bodies to build, operate, or oversee these
installations. The question of reliable performance is very relevant in the foreign market, particularly
in developing countries, where World Bank statistics show that, on average, 40 percent of all
electrical production capabilities are unavailable for service at any given time [46]. Examples of
U.S. utilities that are already operating power systems in foreign countries include Duke, Entergy, and
Mission Energy, who have bought transmission networks in South America and Asia, and who are
now managing these systems with guaranteed performance to the host country [42]. Similarly,
Southern Electric International has recently negotiated the purchase of a 49 percent equity in the
power-generation facilities of Trinidad and Tobago [47].

An alternative form of international competition is the sale of electricity across international borders.
This form of competition is becoming more common in Europe with the European Union countries
exporting/importing over 100,000 gigawatt-hours of electric power annually [48]. This trend of
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selling electricity to other countries is also occurring in Latin America as utilities are privatized, and
as commercialization is being encouraged [49]. At the present time, this type of competition is not
a major concern to the U.S. utilities since Mexico and Canada represent the only practical
sellers/buyers of electricity to the United States; and the amount of electricity being exported/imported
is very small [49, 50]. In fact, Ontario Hydro has expressed its concerns over the negative
implications of Canada becoming a significant source of electricity for the United States [50]. It is
important to note that even though the amount of electricity that crosses the U.S.-Canadian and U.S.-
Mexican borders is small, this exchange is important since it is usually in response to emergency
needs of a particular utility or geographical area. In the winter of 1994, the importing of electricity
from Canada is credited with preventing several severe power outages in the northeastern United
States due to extreme weather conditions [51].

1.2.7 Internationalization of markets for electrical equipment

U.S. utilities bought only $15 billion of electrical equipment in 1988, compared to $50 billion in 1980
[52]. In contrast, the developing countries will buy an estimated $1 trillion of electrical equipment
in the 1990s [46], or about $100 billion per year. Countries like China now represent the world's
largest market for electrical equipment with more than 170 gigawatts of additional capacity to be built
within the next ten years [52, 53]. These facts clearly show that the market for electrical
equipment is no longer focused on the United States. Markets and suppliers for electrical equipment
are becoming increasingly internationalized. The passage of free trade agreements, such as GATT
and NAFTA, will serve to increase further this internationalization and competition [45]. Recognition
of national governments of the importance of this marketplace has led to government support for
national competitive positions in some countries, further intensifying the competitive pressures on
other nations. Several sectors of the U.S. electrical-equipment industry are showing the negative
consequences of very successful international competition [54]. Other U.S.-based companies have
risen to the competitive challenge and have made significant advances in selling their products to
countries with growing electrical markets. General Electric, for example, has received more than
$3 billion in power-system orders from Asia in the last two years [53].

This globalization of trade results in a world market in which equipment testing is governed by
international standards. Consequently, the United States must have access to the same measurement
capability used elsewhere in the world to verify test results and to enable U.S.-made products to
compete in the world market. Also of concern is the possible lead-time advantage for those nations
with measurement expertise. Further, the United States should have a role in creating international
standards (through the International Electrotechnical Commission [IEC]). There are concerns about
the possibility that the desires of a few multinational companies may lead to standards that result in
trade barriers [52].

1.2.8 Continuing growth in demand for electricity

The demand for electricity has continued to grow in spite of major improvements in the efficient use
of electricity. Electricity sales reflect this demand. They increased at a compound average rate of
2.3 percent per year from 1990 to 1995 [55]. Population growth is one important factor in
increasing this demand. Another factor is a technical characteristic of electricity itself: versatility
in application and convenience in control. As a result a never-ending array of new products emerge
that employ electricity.

Measurement Support for the U.S. Electric-Power Industry / NIST



Section 1. Economic Growth, Efficiency, and Competitiveness 11

1.3 Technology Driving Forces

The emergence of new technologyis not a primary driving force for change in the electric-power
industry. That is, there is no obvious, new, ground-breaking technology whose existence mandates
a profound change in the electric-power industry [27]. Rather, forces such as deregulation and
competition are primary. This situation contrasts, for example, with the telecommunications industry,
which was revolutionized by the emergence of fiber-optics technology, acting as a primary driving
force. A technology driving force that would be primary for the electric-power industry would be
the emergence of practical superconducting equipment and transmission lines. (That possibility is
discussed in detail in the next chapter.)

In contrast, theadoption of new technologyis essential to a successful response by the electric-power
industry to the primary driving forces. For the electric utilities, the upcoming changes are also an
opportunity to innovate in ways that in the past were perhaps not economically necessary or feasible.
In fact, so important is the adoption of new technology to this industry that the present has been
described [25] as the "dawn of a new age of technology" for the electric utilities. The president of
the Power Engineering Society of the Institute of Electrical and Electronics Engineers (IEEE) has said
that in the future, the most competitive utilities will be the ones employing the most advanced
technologies [26]. As a result, it has become clear that "contrary to popular conception, the
technology employed and needed by the electric-power industry is not mature" [39].

Some of the many new technologies that will have an impact on the electric-power industry, now that
other forces are driving change, are listed below, as examples. These and many more are discussed
in Chapter Two, which is devoted to technical needs.

1.3.1 Information technology

Improved communication capabilities will be necessary for many demand-side management services.
These services include the automation of distribution of meter reading, as well as other services for
information-exchange between the customers and the utilities [56]. Improved communication
capabilities will also be necessary for monitoring and controlling transmission and distribution
systems.

1.3.2 Power electronics

Considerable growth is occurring in the use of the relatively new technology of power electronics for
diverse applications, such as control and power conversion (principally ac to dc), and especially for
maintaining power quality, and for improving the efficiency of electric-power delivery.

1.3.3 Optical fibers

Optical fibers are promising as sensors in electrical environments because they are non-conducting,
capable of linear sensing along their lengths for some applications, versatile in the number of
parameters they can measure, and sensitive.
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1.3.4 Artificial intelligence

Artificial intelligence (AI) systems are now becoming sufficiently sophisticated that they can be used
to aid in power system design and control [40]. Uses for AI and expert systems include fast
restoration of power after a fault, maintenance of optimal power flow, and load management.

1.3.5 Satellites

Satellites are already used for timing control in power networks and may increase in importance as
wide-area networks, in particular, emerge. The Global Positioning System (GPS) is already being
utilized to determine the location of lightning strikes by supporting synchronized measurements.

2. ENVIRONMENT AND HEALTH

At the end of 1990, over 100 environmental laws were in place that affected the operation of the U.S.
electric utilities [57]. The Edison Electric Institute estimates that nearly $40 billion will be spent
by the utilities to comply with existing federal environmental laws [58]. This trend of growing
legal restrictions on the operation of utilities will most likely continue in the future, and may in many
ways drive the future technological developments required by the utilities. The two most obvious
manifestations of growing litigation surrounding utility operation are in the areas of (1) limitations
on land use due to the proximity of population centers or wildlife, and (2) concerns about pollution,
including that associated with electric and magnetic fields. Both of these areas are discussed below.

2.1 Land-Use Limitations

The utilities face land-use limitations in locating power substations and in obtaining rights-of-way for
new power lines. As a result, the utilities pursue increases in power density in existing rights-of-way
and power substations. The methods used often employ higher voltages and currents and, therefore,
give rise to increased concern for component lifetime and reliability, and for environmental effects
from electric and magnetic fields. Other methods involve: (1) the use of a dc line in parallel with
an ac line to permit stabilization of the ac line while it runs closer to its maximum capacity than
would otherwise be acceptable; (2) special configurations of lines and higher number of phases, both
to increase power transmitted and to decrease field effects; and (3) increased use of underground
transmission systems, including new superconducting systems.

2.2 Pollution Concerns

2.2.1 From electric-power generation

Most electricity in the United States is generated by burning coal, as shown in Table 3 [59]. The
second most important source, nuclear, is about one-third as significant. Over the period from 1975
to 1995, the relative significances of the energy sources shifted significantly. While coal dominated
throughout the period, the relative contributions from gas, hydro, and fuel oil dropped off sharply as
coal and nuclear sources picked up. However, in the recent period from 1990 to 1995, the relative
significances of the energy sources remained largely unchanged, with no energy source changing more
than 3 percentage points.

Concerns over pollution from the production and distribution of electricity continue to be a major
public issue. Possible pollutants include electric and magnetic fields, air and water-borne emissions,
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insulating materials, global warming gases, radioactive waste, andTable 3: ELECTRIC ENERGY
GENERATED, BY FUEL

SOURCE (1975 and 1995)

Percent
Fuel 1975 1995

Coal 44.5 55.2
Nuclear 9.0 22.5
Gas 15.6 10.3
Hydro 15.6 9.8
Fuel Oil 15.1 2.0
Other 0.2 0.2

100.0 100.0

decommissioned nuclear power plants. Concerns expressed over
exposure to electric and magnetic fields have prompted
epidemiological studies that have produced conflicting results, but
which have also greatly affected the public perception of the risk
of living near power lines [60]. The questions of health-
threatening emissions have also received considerable attention,
particularly with regard to NOx, SOx, and CO2 emissions from coal-
burning plants [58]. Coal is intrinsically the least clean fuel, and
it dominates U.S. energy generation. Emissions from coal-burning
plants are of particular world-wide concern because of the
anticipated increase in electricity production in developing
countries. At present, 25 percent of the world's electricity is
produced by developing countries, and this percentage is expected to increase to 70 percent by 2025
[46], mostly through increased burning of coal. This change has huge implications for pollution and
related global warming. Additionally, concerns have recently been raised over the release into the
atmosphere of sulfur hexafluoride (SF6) because of the high global-warming potential and the long
lifetime of SF6 [61, 62]. SF6 is a gas used as electrical insulation in devices such as circuit
breakers and other electrical equipment in substations.

More generally, concern over the environmental impact of power production has led to an increased
desire to develop renewable energy sources. These sources include photovoltaics, wind, biofuel, solar
thermal, geothermal, and fuel cells. Photovoltaic cells are perhaps the most versatile and
technologically mature of these alternate sources. Yet, these cells account for only 300 megawatts
of production annually, although they have a growth rate of approximately 20 percent per year
[39, 63]. Recently, 68 utilities formed a consortium to develop this technology further for wide
spread use [64]. Similar developments can be expected in an effort to tap these other renewable
energy sources.

2.2.2 Abated through use of electricity

Reducing pollution by turning to electrical power in place of direct use of gas, oil, or coal has
recently become an important issue, and will tend to drive some of the anticipated increases in
electricity usage. This driving force underlies the emergence of electrical vehicles, mandated by some
states for upcoming years. The recharging of electric vehicles will present significant additional loads
for the electric utilities, approximately 7.5 billion kilowatt-hours per year for 1 million electric
vehicles [39]. The concept of replacing small internal combustion engines with electric motors is
attractive since electric motors derive their power from central power plants that: (1) use domestic
resources to produce power; (2) utilize centralized, high-quality pollution-control techniques; and (3)
make efficient use of surplus or off-peak electricity [65]. Considerable savings in pollution levels
are also obtainable by converting many other processes and devices to electricity, such as lawn
mowers, steel manufacturing, heating, and high-speed electric trains [37].

3. SAFETY AND SECURITY

Power interruption and degradation in the quality of electricity have major safety consequences as
well as major economic consequences. Minimizing both of these remains a continuing concern for
the electrical-equipment manufacturers and the power providers. However, the anticipated breakup
of the vertically integrated utilities functioning as regulated monopolies raises the questions of who

Measurement Support for the U.S. Electric-Power Industry / NIST



14 Chapter One: Driving Forces

is responsible for reliability and who pays for it. For an industry whose reliability has been almost
unquestioned for the past 50 years, these are extremely important questions. Also, as mentioned
previously, the development of electrical devices that are increasingly sensitive to power fluctuations
makes the stability and reliability of the power system perhaps the most important technical issue to
be addressed in the near future by the utilities [14].

3.1 Reliability and Stability of the Power Network

Reliability and stability have long been hallmarks of the U.S. electric-power system. Maintaining that
enviable record in the face of major changes in the industry, designed to produce positive economic
effects, will be a significant challenge.

Here are examples of some of the changes that will complicate maintaining the reliability and stability
of the power network. The emergence of additional suppliers of electric power increases the
complexity of the power system. The economic pressure on the providers of electricity prompts them
to use aging equipment longer. The environmental restrictions on right of ways encourage sending
more power down existing rights of way. More generally, the emergence of wide-area power sharing
and power wheeling complicate control and stability issues.

These complications give rise to the need for automated transmission and distribution systems to
provide adequate control. These new systems will likely employ new control technology including
optical sensing and solid-state devices in ac environments to bring major sources on and off line, and
to control current flow in transmission and distribution systems.

3.2 Power Quality

Power quality, too, has long been a hallmark of the U.S. electric-power system. However,
maintaining that quality has become increasingly difficult. Power quality is complicated by many of
the same factors that complicate reliability and stability. But there are two additional factors of major
importance: the sensitivity of microelectronic devices and the emergence of power-electronic devices.

The proliferation of microelectronic devices, in everything from personal computers to manufacturing-
process controllers, has radically changed end users' views about the quality of electric power. These
devices can be easily damaged by disturbances in the power systems. In the past, minor power
disturbances were usually evidenced only as a brief dimming or flickering of room lights. Today,
power disturbances have much more dramatic consequences. A momentary disturbance can produce
effects ranging from the inconvenience of resetting digital clocks (blinking-clock syndrome) to the
loss of an entire batch of silicon wafers at a semiconductor fabrication facility. Preventing such a
loss at a semiconductor fabrication facility requires virtually perfectly dependable electric power for
a three-week production cycle [14]. As a further example, corporate data-processing centers can
usually justify a 45 percent increase in capital expenditures as part of the construction of power
systems, in order to ensure power quality [66, 67]. The question of who is responsible for the
quality of power used, the utility or the consumer, is an important one.

A second factor is the emergence of the technology of power-electronic devices. They can be the
source of significant power fluctuations. Power-electronic devices are used increasingly in electrical
and electronic products to achieve high energy efficiencies and excellent control. In normal use, they
switch on and off rapidly to control power flow. The resulting transients can be propagated on
power lines to other users and can degrade the smoothness, or quality, of the sinusoidal waveform
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that the power producers wish to deliver. At the same time, power electronic devices, when
employed by the providers of electric power, are an important part of the solution part to both power-
quality and reliability and stability problems.

4. SUMMARY

All indications are that the electric-power utilities are entering a period of significant change. That
change is driven by forces in at least three broad categories: (1) economic growth, efficiency, and
competitiveness; (2) environment and health; and (3) safety and security. Within these broad
categories, the most important driving forces are deregulation and the economic competition that it
is promoting. To respond to these changes, and thus to remain competitive and profitable, the
providers of electric power are being forced to adopt new technologies.

Where these changes will lead, and what the electrical-power industry will look like in the years to
come, is difficult to predict. However, it is already clear that these changes will give rise to a broad
spectrum of technical needs and to related requirements for new measurement capability, as the next
two chapters will show.
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CHAPTER TWO: TECHNICAL NEEDS

The societal driving forces for the electric-power industry, described in Chapter One, give rise to
distinct technical needs associated with the response of the electric-power industry. In Figure 1, the
societal driving forces are shown in the first column. In the second column, the societal driving
forces are translated into drivers of primary importance to the electric-power industry, such as
efficiency and power quality. These drivers, in turn, give rise to a variety of technical needs that are
shown in the third column. Finally, these technical needs can be addressed with a variety of
technology solutions that are shown in the fourth column.

The structure for this chapter is derived from the second column of Figure 1. That is, the drivers for
the electric-power industry form the basis for organizing the discussion of the technical needs.
However, the drivers of efficiency and reliability/stability have been grouped together to form
Section 1 of this chapter. This has been done because they give rise to some important common
technical needs, as Figure 1 shows. Section 2 discusses trade. Section 3 focuses on the
environmental issues of global warming and health effects. Section 4 addresses the remaining topic
from safety and security, which is power quality.

There are a number of cross currents evident in Figure 1. A given technical need may result from
more than one of the drivers in the second column. For example, the technical needs forreal-time
control of power networksand for improved component reliabilityderive from bothefficiencyand
reliability/stability. Similarly, the technology solutions in the fourth column may serve more than one
technical need. For example, the technology ofpower electronicsprovides solutions to the technical
needs for bothimproved power-transfer efficiencyandmitigation of harmonics. Not all possible cross
currents are diagrammed in Figure 1, just the principal ones, for clarity in the resulting presentation.

With an understanding of these cross currents, the technical needs are discussed in this chapter in the
order shown in Figure 1. Then in Chapter Three, the role of NIST in supporting the technology
solutions is examined.

The following discussion focuses principally on the transmission and distribution aspects of electric
power. Important issues also surround the generation and use of electric power; they are the subject
of other studies underway at NIST. Generation and use are referenced frequently here but are not
examined in as much detail.

1. EFFICIENCY, RELIABILITY, AND STABILITY

Despite the increased use of electricity over the past decade, the utilities have not had to increase
installed power-generation capacity significantly to meet the demand [14]. However, a significant
number of independent (non-utility) power producers have emerged and have been granted access to
the transmission system by order of the Federal Electricity Regulatory Board (FERC). Current power-
generation capacity appears adequate for the near future at least [14]. This situation contrasts with
the predictions of a decade ago, which warned of significant shortages of electricity. Further, the
present growth in demand is being met without significant construction of new transmission systems,
either. This state of affairs results from improving the efficiency of existing power systems. There
are many additional opportunities for improvements to power systems, affecting not just efficiency,
but also reliability and stability. Exploiting these opportunities, however, is highly dependent on the
continued adoption of new technology. These opportunities arise in the transmission and distribution,
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generation, and use of electricity, and in component reliability more generally. All are discussed in

Figure 1: MAPPING DRIVING FORCES INTO TECHNICAL NEEDS AND SOLUTIONS

the following sections.

1.1 Transmission and Distribution Efficiency

Some technical background will prove useful in understanding the following discussion of
transmission and distribution systems. If concepts such as impedance, reactive power, and active
power are already familiar to you, you may wish to skip ahead to Section 1.1.1.

The flow of electric power in transmission and distribution systems is governed by physical laws and
often not by design. The path that an alternating current takes through a power system is determined
by the system’soperating parameters. These parameters are determined by the network configuration
and the loading of the system. The three most important operating parameters are: voltage, which
is the pressure causing electricity to move; impedance, which is so named because it impedes the flow
of electricity; and power factor, which reflects the relative timing of the varying level of voltage
compared to a varying level of current at a specific point in the system. Power factor also reflects
the breakdown of electric power intoactive powerand reactive power, which will be discussed
further below.

The power-handling capacity of a transmission system is limited. Principal among the limiting factors
are impedance and stability. The impedance of the transmission system has two components:
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resistance and reactance. Both can impede the flow of electricity, but only resistance leads to heating.
Heating is caused by the dissipation of power. Resistance, and thus heating, arises from multiple
sources, such as: the electrical resistance of the wires in the system, including those in power-system
equipment; the magnetic properties of the cores in power transformers and inductors; and the
insulating (or dielectric) properties of the materials in capacitors. The amount of heating that a
transmission system can tolerate is referred to as itsthermal limit. Above that limit, equipment in
the system begins breaking down. The thermal limit is sometimes said to be theultimate limit to the
capacity of a transmission system because it is so hard to reduce thermal effects. Reactance arises
from different properties of power-system equipment. It is sourced in the inductance (the ability to
store magnetic energy) and in the capacitance (the ability to store electric energy) of the equipment.
All power-system equipment exhibits these properties to varying degrees. For example, the long
wires used in a transmission line not only exhibit resistance but also exhibit both inductance and
capacitance.

In addition to impedance, electrical instabilities can limit the power-handling capacity of a
transmission system. Instabilities can arise because the power flow in a transmission system evolves
in time. Power flow can behave much like waves in a swimming pool. Major amounts of power can
travel back and forth in a power system, just like waves bouncing off the sides of the pool. These
waves of electricity are stimulated by changing levels of electric power put into, and drawn from,
various parts of the transmission system by switching actions and by changes in demand for
electricity. The waves alternately fill and empty the so-calledreactiveenergy storage areas associated
with system inductances and capacitances. For this reason, the power flow that these waves represent
is called reactive power. These inductances and capacitances occur in components intentionally
designed to exhibit these properties (that is, in inductors and capacitors) or inadvertantly in other
components, such as the wires in transmission lines. Unfortunately, the waves of reactive power
utilize system capacity. As they move, they create heating, without delivering useful electricity to
end users. Thus, the level of electric power actually delivered to end users must be reduced to
provide enough thermal capacity in the transmission system to accommodate the waves of reactive
power. [Note that the industry calls inductorsreactors, even thoughboth inductorsand capacitors
exhibit reactance.]

To increase the power-handling capacity of a transmission line, it is necessary to decrease the flow
of reactive power, increase the flow of non-reactive power, oractive power, and maintain system
stability while doing so. It is this active power that actually performs services for the end users.
Also, it is desirable to decrease any resistances in order to decrease the losses attributable to
resistance for both reactive and active power. Currently, transmission and distribution losses account
for about 7 percent of the electricity generated in the United States [42].

The next two sections describe technologies that can help achieve these aims. First, power-electronic
devices can help reduce the flow of reactive power, while improving system stability and reliability
as well. Superconductors have the potential to reduce resistive losses, but may also help with system
stability and reliability. And, finally, real-time network control can improve system stability. It can
stabilize the network through control of power-electronic devices and the end-users demand for
electric power.

1.1.1 Power-electronic devices

At present, system parameters in transmission and distribution systems are not controlled well enough
to channel the flow of power across specific paths in the most efficient way. For example, the
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mechanical switching of circuits and ofcompensationcomponents, such as capacitor banks, is
relatively slow. Voltage disturbances due to unavoidable events, such as lightning strikes and
equipment failures, cannot generally be controlled fast enough to prevent their propagation through
power systems. Because of these control problems, the capacity of some transmission lines to carry
electric power is limited by system stability and not by the inherent limits at which overheating and
subsequent failure of the power equipment occurs. Deregulation is changing the utilities’ operating
environment, not just its economic environment; and the need for better control of power flow is
becoming critically important as a result [14].

Power-flow controllers, based on electronic devices, are being developed to give operators a
previously unavailable level of control over transmission system parameters in order to maintain
stability. The controllers also enable compensating for, that is, reducing the reactive part of the
impedance. When stability is improved, or when the reactive part of impedance is reduced, the power
flowing through a transmission system to end users can be increased to approach more closely the
thermal limits imposed by the resistive part of the impedance. By increasing the power transfer
capability of existing transmission systems in this way, the utilities avoid the cost of construction of
new power lines [68].

The utilities are now moving toward implementation of power-flow-control technologies to meet the
technical needs for improved efficiency and stability of power systems. A long transmission line
connecting, for example, a remote power plant to a distribution center, has an impedance which limits
its power-handling capacity. In the past, the straightforward technical solution was to build additional
transmission lines in parallel to provide additional capacity. But this solution has three major
problems: high cost; long lead times; and the almost insurmountable problems of obtaining additional
rights-of-way, particularly in urban areas where the demand is increasing at the highest rate. Utilities
have traditionally used capacitors and shunt reactors (inductors) switched into and out of networks
with mechanical switches to compensate for the reactance of the lines and changing load impedances.
In contrast, power-electronics-based technologies are now being developed that control transmission
line impedance. This approach should greatly increase efficiencies for electric-power delivery. With
better control over operating-system impedances that these new approaches provide, the amount of
electric power transferable over transmission lines will increase because the lines can be operated
closer to their thermal limits. These same power-flow-control technologies, along with more
customized approaches, can also be used for maintaining high power quality since poor power quality
arises from a lack of control over the system operating parameters.

One system for power-flow control employing the above approaches has been developed by EPRI and
is called theflexible ac transmission systemor FACTS [14]. FACTS technology is presently being
tested prior to widespread use. For example, the Bonneville Power Administration (BPA) has just
tested a FACTS system on a 500 kilovolt transmission line with 2500 megawatts of capacity [69].
The successful completion of this test has led BPA to anticipate that FACTS technology could save
them $150 million over the next 20 years. Application of FACTS technology to large systems will
require that new automated systems support wide-area real-time control, possibly employing satellites,
to assure stability, especially in the face of increased numbers of independent power producers. In
addition, more advanced techniques will likely be needed to decrease the sensitivity of the power
network to frequency mismatches.

Over the past 15 years, a number of new FACTS devices have emerged with important capabilities.
The first of these devices switched large external capacitor banks in series with, or across (shunt),
transmission lines. The new element was the use of electrical devices, called thyristors, to do the
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switching, rather than mechanical switches [70]. The thyristors provided much faster switching
capability.

One example of these devices is the static var compensator (SVC), which is simply a shunt
capacitor bank. The SVC provides voltage support near heavy loads at the end of a
transmission line, but does not control power flow.

Another example is the thyristor-controlled series capacitor (TCSC), which places a capacitor
bank in series with a transmission line. It dampens disturbances on the line through control
of the line impedance. The TCSC enables the line to operate closer to its thermal limits and
thus enables increased power flows over long distances. The Western Area Power
Administration (WAPA) installed a TCSC in 1992 and increased the power handling capability
of one line considerably, from 300 to 400 megawatts [68].

Thereafter, newer FACTS devices were implemented that eliminated the need for large external circuit
elements [large capacitors and reactors (inductors)] by using gate turn-off thyristors (GTOs) to
simulate these elements electronically. They further reduced the cost of the controllers and improved
performance, too.

One example of these newer FACTS devices is the static compensator (STATCOM), or
equivalently, the static condenser (STATCON). The STATCOM provides voltage support by
generating or absorbing reactive power through an electronic shunt connection that can quickly
dampen major power-system disturbances. The STATCOM is actually a power-electronics
system having dc storage, a converter, and a transformer to hold a power line at the required
voltage level by supplying, or absorbing, reactive power. Depending on the size of the energy
storage, it can supply real power to the load for short periods. EPRI and the Tennessee Valley
Authority (TVA) have demonstrated a 100 million volt ampere reactive STATCOM that
eliminated the need for construction of an additional 161 kilovolt transmission line into the
Johnson City, Tennessee area. TVA’s cost was $10 million for the FACTS versus $20 million
for just the new transformer bank required by the proposed transmission line 14].

Another example of the newer FACTS devices is the Unified Power Flow Controller (UPFC).
It is so named because it provides control over all three power-flow parameters of voltage, line
impedance, and power factor, in one device. This device is being tested in the Inez Substation
of American Electric Power in eastern Kentucky.

Although much of the technology for FACTS is presently available, there are still technical challenges
to be addressed. There is a need for low-cost, accurate sensors that can be installed throughout the
transmission systems to monitor power-system disturbances. There is an accompanying need for
communication systems to monitor the sensors and to coordinate the operation of the FACTS devices.

1.1.2 High-temperature superconductors

One possible route to loss reduction is being pursued through the development of superconducting
electric-power equipment [71]. This approach attacks principally the resistive losses.

Although much of existing power equipment is highly efficient, there is room for improvement in
generators, cables, and transformers, where the electrical resistance of the conductors produces power
losses. In the 1960s and 1970s, there was a major effort to develop transformers and cables having
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low-temperature superconductors as elements, to minimize power losses. Because of the high cost
of refrigeration required to maintain the low-temperature superconductors at liquid-helium
temperatures (1.8 K to 4.2 K), the equipment was not cost-effective, even when evaluated on a life-
cycle cost basis; and the development efforts ended in the early 1980s. The recent development of
high-temperature superconductors, which are significantly less expensive to refrigerate, has renewed
interest in superconducting power equipment. This interest has resulted in worldwide development
of superconducting cables, generators, and transformers [71]. Additionally, further incentive to
improve efficiencies of power equipment has been provided by the National Energy Policy Act
(NEPA) of 1992, which mandates that the U.S. Department of Energy assess regulations governing
the efficiencies of transformers and motors.

High-temperature superconductors, which become superconducting at liquid-nitrogen temperatures
(77K), were discovered in 1987 and have the primary advantage that refrigeration technology can
maintain temperatures at or below 77K without great expense and inconvenience. However, the high-
temperature superconductors are all ceramics, which are difficult to fabricate into the wires and tapes
that are necessary for electric-power equipment. The first high-temperature superconductor devices
developed were fault-current limiters (FCLs) that limit the amplitude of large currents due to short
circuits induced by lightning strikes. These devices were attractive as an early application of high-
temperature superconductors because they utilized bulk ceramic material that was easier to fabricate
than the high-amperage wire or tape conductor required for other power equipment. The application
of high-temperature superconductors to transformers, cables, and generators is also under
development. The present state of development for the major applications of high-temperature
superconductors is described below. The technical needs are similar for all FCL applications and are
discussed at the end of this section.

Fault-current limiters (FCLs) : Fault currents can destabilize the power grid over a large area. Conventional
devices used to limit fault currents include series resistors and reactors (inductors), but these introduce
significant power losses and voltage drops during normal operation. High-temperature-superconductor
FCLs do not have these inherent disadvantages. A consortium formed under the Department of
Energy's (DOE's) Superconductor Partnership Initiative, comprising Lockheed Martin, Southern
California Edison, Los Alamos National Laboratory, and the American Superconducting Corporation,
has developed laboratory prototype FCLs rated for 480 volts and 1 kiloampere, and for 2.4 kilovolts
and 3.1 kiloamperes [72]. These FCLs use power electronics to switch a superconducting reactor
into the circuit under fault conditions in order to limit the current in less than one cycle. The current
limiting capability of the superconducting FCLs eliminates or at least delays the need to upgrade
power equipment such as circuit breakers, buses, disconnect switches. As more non-utility generators
(NUGS) come on line and as electricity usage increases, the power-system equipment must be able
to handle increasing amounts of power during normal operation and larger currents in the event of
a fault. Installing FCLs eliminates the need for upgrading equipment such as circuit breakers because
they maintain currents within the existing equipment's specified short-circuit duty.

Transformers : Conventional transformers of the largest sizes are highly efficient; power losses are less
than 1 percent of their nominal power rating when operating at full rated load, and the losses are
lower at reduced loads. However, when considered over the life of the transformer, the cost of the
losses can match the initial capital investment in the transformer. High-temperature-superconductor
designs can potentially improve efficiencies while reducing the volume and weight of transformers
relative to conventional designs. Additionally, unlike conventional power transformers, high-
temperature-superconductor transformers use no substantial amounts of materials that present either
fire or environmental hazards. The national savings to be realized from high-temperature
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superconductor transformers has been estimated to be about $25 billion through the year 2030 [73].
ABB, American Superconductor Corporation, Electricité de France, Services Industriels de Geneve,
DOE, and the Swiss Utilities Study Fund are jointly building a three-phase, 630 kilovolt ampere, 50
hertz, high-temperature-superconductor transformer to be demonstrated in 1997. Rochester Gas and
Electric, Oak Ridge National Laboratories, the Waukesha Division of General Signal Corporation, and
Intermagnetics General Corporation are building a 1 megavolt ampere high-temperature-
superconductor demonstration unit that is now in the design phase [74]. Further, a single-phase,
13.8 kilovolt transformer, sized as one leg of a 138 kilovolt, 30 megavolt-ampere unit initially
operating at ten percent of the rated voltage, is to be built by the summer of 1997, and tested in the
fall to serve as a test bed for cryogenic systems and conductors.

Cables : The present rate of installation of new underground transmission circuits in the U.S. utility
network is about 100 miles annually. This rate of installation can be expected to increase as
transmission needs rise in populated areas. Many of the underground cable installations are installed
in pipes; about 20 percent of these have exceeded their nominal life of 40 years. High-temperature
superconductor cables are attractive replacements for existing underground cables because they can
increase the ampacity [75] as much as 350 percent for certain designs [76]. These cables can
even exceed overhead line ampacity in some cases and can eliminate the need for double and triple
cable circuits by meeting the highest current requirements. Pirelli Cable Company has demonstrated
a high-temperature-superconductor conductor that exceeded its anticipated performance and is
developing a room-temperature-dielectric (RTD) cable where only the center conductor is maintained
at cryogenic temperatures.

Motors and generators : A 29 horsepower, air-core, synchronous motor with a rotating, high-temperature
superconductor field winding cooled to 27 K by helium gas has been demonstrated [77]. There
is a problem in that power equipment with high inherent self-fields, such as motors and transformers,
require either improvements in the superconducting tape used or operation at reduced temperatures.

There are three significant technical needs to be addressed in the development of high-temperature-
superconductor power equipment. First, the performance of the electrical insulation under cryogenic
conditions must be confirmed. Second, the ac power-transfer efficiencies must be accurately
measured. Although high-temperature superconductors have zero dc resistance when in the
superconducting state, they do experience ac power losses, which, although small, need to be
quantified. It will be a metrological challenge to measure the small power losses of these high
efficiency devices. Third, the operation of the high-temperature superconductors under fault-current
conditions must be investigated. For the device to be of practical use in many applications, it must
remain superconducting, or it must recover quickly enough under fault-current conditions to permit
automatic reclosure of circuit breakers.

1.2 Transmission and Distribution Stability Through Real-Time Control

Real-time control of power networks will be needed to maintain the stability of transmission and
distributions systems while improving power-transfer efficiencies. Such control is particularly
important as electric-power consumption rises and as the wheeling of electric power increases with
deregulation. In order to implement such control, the utilities will have to install many more sensors
than are presently installed, reduce the peak loads through better control of their customers' demands,
and employ advanced communications and control techniques, such as the use of artificial-intelligence
approaches. The technical needs arising from real-time control are discussed in the following
subsections.
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1.2.1 Cost-effective sensors

Sensors are used throughout the electric-power system in the generation, transmission, and distribution
segments for limited monitoring of power-system equipment. However, as attempts to control the
operating parameters of power networks increases, the installation of many more sensors will likely
be needed to monitor system disturbances.

Sensors in the transmission and distribution systems are needed in greater numbers to measure
voltage, current, and power factor. The additional measurements will provide more information on
the state of the system so that proper operation of end-user equipment can be ensured. The
availability of inexpensive sensors having no violent failure modes and not requiring periodic
recalibration could lead to major improvements in the observability of power-system
irregularities [78]. Such capability would have found critical application in the massive power
outages in the western United States on July 3, 1996 and August 10, 1997. Significantly improved
diagnostic coverage of the system could perhaps have provided advance warning of the problems and
would have been useful in determining the causes of the outages [79].

Sensors are also important for measurements of power quality, as discussed further in Section 4 of
this chapter. The sensors can help quantify harmonics of the fundamental power-frequency voltage
and current, voltage dips, spikes, and other transients; and the sensors can help identify the sources
of power quality degradation to protect customer equipment. Another important function of sensors
is the detection of high-impedance faults. These faults can occur when downed power lines do not
draw enough current to trip protective equipment, and can result in lost lives and significant damage
from fires.

Distribution systems are virtually unmonitored for three historical reasons: (1) the utilities’ lack of
processing capability for large quantities of data, (2) the high cost of communicating field data to
control centers, and (3) the prohibitive cost of sensors and their installation, which is typically $5,000
for a common three-phase site. The decreasing cost and increasing computing power of personal
computers and workstations allows the utilities to address the first need in cost-effective ways with
existing technologies. Developing technologies such as digital cellular communications and low-
earth-orbit satellite (LEOS) telephony will make the second need of communicating field data
addressable in the near future. The need for low-cost sensors in the field presents greater technical
challenges that require further research and development. Although there are low-cost sensors
presently available that meet the measurement requirements, they typically do not meet the additional
requirements for field installations: (1) a long maintenance-free life of from 5 to 10 years; (2) self-
powered or inductively powered; (3) simple installation; and (4) self-calibrating or remotely
calibratable. Sensors are required to have measurement uncertainties of less than 1 percent for system
monitoring and from 5 to 10 percent for diagnostics and condition monitoring [80]. However, the
required uncertainties and other needs are poorly understood for distribution systems since historically
they have been sparsely monitored. These needs will become more clearly defined as more custom
power devices are brought on line and as the interactions among them in service become better
understood.

There also exists a need in bulk-power transmission systems, for protection, monitoring, and metering.
There is a need both for primary sensors that measure voltage and current and for secondary sensors
(meters) that compute other quantities such as power, energy, and frequency from the measurements
made by the primary sensors.
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There is a definite need for the calibration of primary sensors in service. It is desirable that new
sensors be self-calibrating, remotely calibratable, or have characteristics that change over time in a
predictable manner since the alternative of calibrating sensors in the field is so costly. There is also
a need to determine the quality of sensors presently installed.

Frequency is one quantity monitored by sensors for relay systems designed to protect generating
plants. Capacitively-coupled voltage transformers (CCVTs) are often used for voltage measurement
and frequency monitoring in relay applications, but some CCVTs have problems in determining 60
Hz voltage magnitude with sufficient accuracy. They may also cause errors in the frequency
measurements used by protective relays. When a power disturbance occurs that results in a
significant interruption of power flow, the demand of the load for electrical power may exceed
generating capacity, resulting in a drop in both voltage and frequency of the power system. At the
generation end, these changes may result in overheating of the generators as attempts are made to
produce more power. Also, the turbines that drive the generators are designed to operate within a
narrow range of rotational frequency and if operated outside the limits of this range may suffer
mechanical damage. Some CCVTs have a transient response to a sudden system voltage drop that
may occur at a frequency that differs from the power system frequency. Since this effect may lead
to a faulty trigger of a relay that removes some load in an effort to help restore the frequency and
voltage, there is a need to improve the frequency measurements. There are also problems in
accurately measuring harmonics where the tuning inductance of the CCVT destroys its frequency
response. Another need exists for combining CCVTs and current transformers (CTs) into a single
package.

Some utilities desire new sensing techniques for determining power flow and imbalances in the power
system. There is a need for measurements in power systems to be referenced with a common time
tag to obtain better information about how power is flowing at any given time. Remote sensing for
monitoring of power systems makes primary sensors, timing, and communication systems of
overriding importance, and requires the development of techniques for synchronized phasor
measurements.

Optical sensors represent one possible solution to the need for reliable, economical sensors.
Conventional sensors for voltage and current are expensive and require large volumes of electrical
insulation when used on high-voltage lines. Current transformers (CTs) installed on 500 kilovolt
power lines have exploded when they fail because of the flammability of the insulating oil used
within them [81]. Several manufacturers, including ABB, 3M, and Square D [81, 82, 83],
have developed optical current transducers (OCTs) that are designed with all solid insulating materials
and are therefore intrinsically safe. These OCTs utilize the magneto-optic Faraday effect in either
optical crystals or fibers to induce a rotation in the plane of polarization of a light beam passed
through the sensor head. The rotational change is linearly proportional to the current through the
sensor. OCTs have the additional advantages of immunity to electromagnetic interference and wide
dynamic range. Although saturation is not a problem, as with iron-core current transformers, the
OCTs are linear over only a finite current range. This does not limit the usefulness of OCTs since
their linear range is selected by appropriate sensor-head design and since measurements of currents
outside of their linear range are readily corrected by more complex signal-processing techniques. The
wide bandwidth of the OCTs, limited only by the optical detector, makes them applicable for both
power-frequency metering and measurements of transient currents.

OCTs are presently being field-tested in the TVA system as well as elsewhere [81, 82] and
preliminary results indicate that they satisfy requirements for metering-class measurement uncertainty.
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Optical voltage sensors are also under development as replacements for voltage transformers (VTs).
They have the same advantages as the optical OCTs and are anticipated to be lower in cost than
conventional CTs and VTs when mass-produced. They may become the low-cost, general-purpose
voltage and current sensors devices desired by utilities. Questions remain about their stability,
sensitivity, and linearity; and these questions must be addressed before these sensors are embraced
by the utilities on a wide scale. The sensitivity of the optical sensors to vibration and temperature
changes must be minimized by either design or signal processing. The long-term stability of these
sensors is under study in field trials, but techniques for calibrating them in the field and in the test
laboratory must yet be developed.

1.2.2 Demand-side management

As mentioned in Section 1.2.4 of Chapter One, demand-side management (DSM) programs are
becoming increasingly popular with the utilities to reduce the level of demand and the fluctuation in
demand. The purpose is to mitigate the need for construction of new electrical generation and
transmission systems. The most common type of DSM program promotes the use of energy-efficient
lighting, motors, etc. by electricity consumers. The technical needs associated with this type of
program are primarily related to the development and characterization of energy-efficient devices,
which were discussed in Section 1.4 of this chapter.

The other type of DSM program involves the direct real-time involvement of the utility, either by
granting the utility some control over electrical devices used by the consumer (such as in Pepco’s
Kilowatcher Club), or by instituting real-time pricing. With real-time pricing the consumers are
continuously informed of the instantaneous cost of electricity, and can adjust their use patterns
accordingly. The technical barriers to these types of programs are primarily related to information-
system integration. The three primary barriers are: (1) unavailability of a viable, unified, standard
communication architecture that extends from the customer’s meter or field device to the utility; (2)
lack of harmonization of controlling software, thus promoting proprietary systems for each utility that
limit the amount of information that can be shared with other companies and that raise software costs;
and (3) deployment of viable, affordable communication systems.

1.2.3 Artificial intelligence

The eastern U.S./Canadian interconnected power system is often modeled with 2000 generators. To
model this system mathematically and describe its dynamics requires up to 20,000 first order
differential equations [84]. Although the system is non-linear, the linear approximation to its
behavior works well. However, due to the sheer complexity of the system, the process of modeling
and analysis is clearly a job for computers, even when the governing equations are linearized. The
non-linearity of the interconnected power system is seen by the suddenness of the onset of oscillatory
behavior. There may be no indication of a problem as power flow over a system intertie is increased.
Then, suddenly, a certain stability limit is reached beyond which a slight increase in power flow
causes oscillations. These oscillations increase quickly in amplitude. All this can occur without the
need for a system fault to start the process.

Deregulation of the utilities will promote more bulk-power wheeling and possibly more retail
wheeling, with greater power transfer across system interties along with the anticipated increase in
system monitoring with many more sensors than are presently in use. This change will give rise to
the need for computer monitoring, analysis, and control. An increase in applications of artificial
intelligence (AI) techniques, such as fuzzy logic, neural networks, and expert systems, will likely be
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desired by the electric-power industry, as an already complex system becomes even more
sophisticated. Similarly, applications of AI techniques will be needed for monitoring of electric-
power equipment. One area of application of AI techniques already being investigated is partial-
discharge measurements [85, 86].

1.2.4 Communications and control

In the Fall of 1989, the Department of Energy’s (DOE’s) Office of Energy Storage and Distribution,
together with the Bonneville Power Administration (BPA) and the Western Area Power
Administration (WAPA), came together to assess related R&D needs for future electric-power-system
operation. One of the major areas for the resulting Joint DOE/BPA/WAPA Research Initiatives was
real-time control and operation [87]. As a result, the Western System Dynamic Information
Network (WesDINet) was planned in response to the utilities' needs for direct information about
system characteristics, accuracy of system models, and operational performance [88].

Existing system monitors and communications do not provide the comprehensive data access and real-
time integration necessary to control fully the wide areas of the power system. A wide-area
measurement system (WAMS) for real-time control and operation of electric-power systems is under
development [88]. It will provide the key technologies for WesDINet, such as the mathematical
software for extracting information from measurements. The communication links will provide high-
performance support for sharing of reference signals for wide-area correlation, automatic posting of
disturbance directories on computer bulletin boards, exchanges of data records, and interactive
assistance in measurement operations and analysis from remote locations.

Replacement of present point-to-point analog communications in power systems with digital channels
having comparable bandwidth and resolution could prove to be a poor investment. There is a need
for new communication system architectures having the flexibility to accommodate developments in
digital technologies in order to replace analog communications with digital systems in the most cost-
effective manner [89].

There is also a need for real-time assessment of actual power flows and dynamic capacity, and better
control of power flow across interties. In the WAPA system, a persistent constraint is inadvertent
loop flows that readily consume all available transmission capacity and that limit the capacity of
several transmission lines [90]. Phase-shifting transformers and advanced series compensation
devices may be used to relieve loop flows.

For the automation of distribution-system control, information systems are needed to manage field
equipment from the substation to the meter. Four tools are being developed by four different utilities’
departments to address the needs for automated distribution systems [91]: (1) automated mapping
and facilities management systems, developed by engineering departments; (2) supervisory control
and data acquisition systems (SCADA) developed by operating departments; (3) load-management
systems developed by power supply departments; and (4) automated meter-reading systems developed
by business departments. Although the four tools often rely on common techniques, they are not
often integrated. There are several barriers to such information-system integration. First, as
mentioned above, there is no viable and unified communications architecture presently available that
extends from the meter or field device through the utility office local area network (LAN). Second,
the database or facility-management component of utility mapping systems is not easily adapted to
real-time data. This component often lacks external program links, depends on operator, rather than
event-driven, initiation, and does not support structured query language (SQL) standards. Third, the
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user interface lacks display, or detail responsiveness, needed for system operations. SCADA
interfaces are traditionally oversimplified representations of distribution systems and have had
difficulty keeping up with general user-interface options available from leading computer operating
systems. Fourth, the utility industry, and particularly the electric-utility segment, considers its needs
unique. Utility vendors have, as a result, provided proprietary systems with communications protocols
and computer bus architectures that limit the sharing of technology with other industries and raise
costs. Fifth, most integration efforts to date have involved custom engineering and programming.
Sixth, vendors have been product-driven rather than design-driven. That is they sell communications
systems within the utilities' traditional organizational structure rather designing for the overall system.
Vendors have been reluctant to participate in multi-vendor teams to meet utilities needs. Finally,
there is a need for standardization of communications-system protocols to allow utilities to implement
distribution-system automation.

1.3 Generation Efficiency

Inefficiencies, or power losses, can also occur at the generation end of the power system, where there
is also a need for improved measurement capability. Principal among these is the need for improved
measurement of temperature in coal-fire boilers. These boilers are used to generate the steam that
powers the turbines used for generating nearly 60 percent of the electricity used in the United States.
Temperatures even slightly too high can significantly reduce boiler lifetimes. Temperatures even
slightly too low will reduce efficiency.

Also, existing power-plant meters that measure flow in steam and water pipes can become fouled,
resulting in inaccurate measurements. In particular, water in power plants is injected into steam to
control steam temperature. Improved measurement accuracy for water flow can lead to a variety of
benefits for reasons similar to those noted for temperature measurement above. One of the benefits
is improved system lifetime because improved control of water flow provides improved control of
temperature. Improved control of temperature, in turn, reduces thermal cycling and unintended
operation at too high a temperature, both of which can shorten system lifetime. Another benefit is
improved efficiency. Unintended operation at too low a temperature reduces system efficiency. For
example, a one percent error in flow measurement can translate into a one percent increase in fuel
consumption. A third benefit is greater power output. Improved temperature control enables
operating closer to the legal limits specified for every power plant, without the risk of exceeding those
limits. EPRI and NIST have recently begun work under a cooperative research and development
agreement (CRADA) to employ a noninvasive acoustic technique for measuring water flow in pipes.
This technique will avoid the fouling problem encountered with conventional flow sensors. This
technique also enables making flow measurements conveniently in more locations within a power
plant, for improved overall characterization of the generation process.

1.4 End-Use Efficiency

Reduction in wasted electrical power can be effected through the development of end-use equipment
with improved electrical efficiencies. Efforts are underway to develop energy-efficient technologies
for lighting, motors, and heating; areas that represent the vast majority of electrical power
consumption. In addition to development efforts for superconducting motors described above, the
1992 Energy Policy Act [92] has initiated a study to develop a series of tests to ensure the
efficiencies of electric motors, which use approximately 60 percent of the electricity generated in the
United States [93].
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1.4.1 Lighting

Substantial savings in electricity consumption can be obtained by the use of efficient lighting devices
(e.g., fluorescent lights versus incandescent lights), and this is a common demand-side management
process utilized by utilities to reduce power demands. However, it has been pointed out that the
present efficiency of lighting has not substantially increased in the last 15 to 20 years [94], even
though the most efficient light sources available today are well below theoretical maximums. What
the lighting industry would like to develop is awhite lamp with an efficiency of about 200
lumens/watt (about twice that available today), but many researchers are of the opinion that this will
require abreakthroughdevelopment [94].

Pursuing such a breakthrough requires addressing an enormously complex multi-disciplinary problem
which would require research in many areas, including electrical discharges, light emission, advanced
materials, electric-power devices, aging phenomena, etc. Specific technical needs fall into two main
areas: (1) materials, such as better emitters, phosphors, electrodes, envelopes, seals, and glasses; and
(2) discharge chemistry and physics, such as the determination of fundamental data on
thermochemistry, electron and ion diffusion and collisions, collisional broadening of spectral lines,
molecular radiation, optical emission, surface interactions, and reaction rates. The development of
new materials and the measurement of fundamental data represent the first step towards development
of the next generation of lighting.

1.4.2 Motors

Efforts are being made to improve the efficiencies of electric motors in end-use applications. The
1992 National Energy Policy Act [92] called for the development of test procedures and certification
requirements for certain commercial motors. Efficiency standards are now being developed for
general-purpose, polyphase induction motors with power ratings from 1 horsepower to
200 horsepower. The proposed rules have been reviewed by the Department of Energy and released
[95].

The development of motors using high-temperature-superconductor technology for applications where
the benefits of reduced size and losses outweigh the added expense and complexity of the high-
temperature-superconductor design has been discussed in Section 1.1.2. Improvement in ac-induction-
motor efficiencies is also being realized through the use of variable-speed controllers, also known as
adjustable speed drives (ASDs). Formerly, motors were operated at constant speed; and flow was
regulated with a throttle or bypass. The variable-speed drive rectifies the line power and uses an
inverter to control the motor speed by varying the frequency of the power to the motor.
Microprocessor-based controllers and pulse-width modulation techniques are also being developed.
The use of these electronic controllers will result in a much more energy-efficient way of controlling
motors, but these controllers will also have some disadvantages. The harmonics introduced into the
power lines by the controller can affect revenue meters and may be incompatible with other sensitive
equipment connected to the same lines. The effects of harmonics are discussed in Section 4.2.
Additionally, the harmonics generated by the controller may also increase eddy currents in the motor
itself, leading to elevated temperatures that reduce the motor lifetime and reliability.

EPRI has a targeted research project to develop high-performance motors through the improvement
of motor materials, circuits, controls, and components [96]. The project is intended to incorporate
improved technology into motors that will offer higher efficiencies, higher power capabilities, and
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possibly lower costs. Additional concepts of high-speed motors, high-temperature superconductor
motors, and advanced insulation designs are to be explored.

1.4.3 Heating

Steady increases in heat-pump efficiencies have led to a 27 percent increase in the seasonal energy-
efficiency ratio (SEER) ratings of air-source heat pumps over the last decade [97], making heat
pumps more attractive than earlier, in terms of energy costs. New designs are being developed to
serve both space heating and water heating needs with resulting energy cost savings of 20 percent to
40 percent over separate units. Improved designs, such as in ground-source heat pumps (GSHP), now
extend their applicability to climates in regions further north. The dual-fuel heat pump (DFHP)
combines a gas furnace with a heat pump to enable the most efficient operation, depending on
temperature, as either a heat pump, gas furnace, or combination of the two.

In addition to the efficiency improvements, advances in environmental compatibility have also been
made. EPRI together with NIST and others have accelerated the development of zero-ozone-
depletion-potential (Zero-ODP) refrigerants to make heat pumps environmentally safe.

1.5 Component Reliability

Power-system reliability is enhanced through the reduction of equipment failures. The failures can
be reduced through predictive maintenance using advanced equipment monitoring technologies, and
in particular, through more accurate on-line condition monitoring. The improved reliability of power-
system components results in the prevention of lost revenue by reducing power outages. Additional
cost savings for utilities can be realized by extending the usable lifetime of expensive equipment, such
as power transformers, beyond their design lifetimes, which delays the outlay of capital for replacing
old equipment.

1.5.1 Reliability testing

Since lightning is a major cause of power-system disturbances, electrical-power equipment is
subjected to testing with high-voltage impulses before being placed in service to ensure reliability.
International standards governing testing with lightning impulses have been recently revised. They
introduce thereference measurement systemthat is used for comparative testing of impulse voltage
dividers that are used in routine testing [98, 99]. The reference systems are required to have
lower measurement uncertainties than those used for routine tests. There is a technical need to ensure
that the more stringent requirements placed upon reference systems are met.

1.5.2 Condition monitoring

A recent development in the area of maintenance of power equipment is a change from thecorrective
maintenanceapproach or thetime-scheduled maintenanceapproach to areliability-centered
maintenance, or RCM, approach. This change is expected to reduce maintenance costs by 25 percent
to 50 percent.

Many utilities use the corrective-maintenance approach on substation equipment, which is essentially
the approach of waiting until a component fails before replacing it. In the past, this approach has
proven to be cost-effective. In power plants and for other components in power systems, maintenance
has traditionally been based on a time-scheduled replacement or refurbishment of equipment. This

Measurement Support for the U.S. Electric-Power Industry / NIST



30 Chapter Two: Technical Needs

is very costly because it is based on the manufacturers’ conservative recommendations. As power
systems become more complex with more sophisticated equipment being installed, the RCM approach
is being implemented. RCM, which was developed by the airline industry to make jumbo jets
economical, relies on component condition and criticality, in lieu of routine scheduling for inspection
and overhauling. Those components identified as critical are replaced on the conservative time-
scheduled basis, while others are replaced on a conditional basis. RCM was first implemented in the
electric-power industry for nuclear plants and is now being extended to substations. Condition-
monitoring information obtained from diagnostic sensors is essential to these maintenance programs.

Many sensors are now being developed to monitor the conditions of transformers, generators, and
other power equipment. Among these are thermography scans to detect hot spots due to abnormally
high current flows, winding resistance tests to detect failing connections, and capacitance of winding
insulation to determine aging or the presence of moisture. As reported by EPRI [14], a thermography
scan detected a faulty bushing on a nuclear power plant’s main step-up transformer, and averted an
imminent failure, saving an estimated $4.8 million in lost electricity production.

Internal transformer monitoring is also needed and is being made possible by the development of in-
situ semiconductor gas sensors [100]. Gas evolution in power transformers has been used as a
diagnostic tool to monitor hot-spot temperature and partial-discharge activity in power
transformers [101]. Gas-in-oil analysis is routinely performed on oil samples taken from power
transformers to assess the condition of the unit. Now a real-time semiconductor monitor has been
demonstrated which detects four key gases: hydrogen, acetylene, ethylene, and carbon monoxide.
They are detected by the voltage produced when they adhere to a catalytic metal surface in a metal-
insulator-semiconductor structure. Four sensors, each sensitive to a different gas, are combined in
a single unit inserted directly into the transformer oil. These sensors provide an accurate time profile
of changes and trends in dissolved gas concentrations in the general range of 20 ppm to 2000 ppm
with uncertainties of ±10 percent or less. The sensors, which are insensitive to water, methane,
ethane, carbon dioxide, nitrogen, and mineral oil, are intended to eliminate the need for routine
dissolved-gas analysis (DGA).

Another example of a recently-developed condition monitor is a fiber-optic strain gauge developed
to monitor corrosion in stainless steel steam generator tubes [102]. A significant problem in
nuclear steam generators is intergranular attack (IGA) and surface corrosion cracking (SCC) in Alloy
600 tubing, which can result in failure of the tubes. Because water is flowing at 1 m3/s (35 ft3/s) at
7.6 MPa (1100 psi), and 316 °C (600 °F), conventional strain gauges cannot survive; and
interferometric techniques are unsuitable for long-term observation due to changes in tube surface,
turbulence in intervening air, etc. A fiber-optic strain gauge was recently demonstrated that is capable
of detecting the onset of IGA/SCC earlier than conventional gauges and of indicating progression of
IGA/SCC even though the eventual failure was not directly under the gauge.

Analogous to gas-in-oil monitoring of power transformers, EPRI has a research and development
program to use by-products in SF6-insulated equipment to monitor their internal condition [103].
A database is presently being established. It is based on gas-chromatographic analyses of by-products
in samples taken from circuit breakers in service. The database is being established at an accelerated
pace compared to the gas-in-oil database for power transformers. The gas-in-oil database was
assembled over a twenty-year period. The study intends to identify key concentration levels of SF6

contaminants so that informed judgements can be made before opening equipment for inspection and
maintenance. There is a need to minimize the opening of gas-insulated equipment and the potential
venting of SF6 to the atmosphere, as discussed below in Section 3.1.1.
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Partial-discharge monitoring : The detection and quantification of partial discharges (PDs) has become
important in assessing the integrity and remaining life of electrical insulation and in certifying the
performance of high-voltage electric-power apparatus. There has also been increasing interest by the
electrical manufacturers and power utilities in the use of on-line PD monitoring as a diagnostic for
locating incipient faults in cables [104], transformers [105], and rotating machinery [106].
The Nuclear Regulatory Commission is exploring possibilities of adding in-situ PD testing of
instrument cables to the list of measurements required for approving nuclear-power-plant life
extension [107]. The measurement of PD is also important in evaluating the performance of
electronic instrumentation and components.

Partial discharge is a localized discharge phenomenon that is usually impulsive and often occurs at
defect sites such as voids and cracks in electrical insulation where there can be significant local
enhancements in electric-field strength [108]. It is known that the occurrence of PD can lead to
rapid aging of all types of insulating materials including gaseous, liquid, and solid insulation. It is
also known that PD is often a precursor to complete electrical breakdown that may result in
catastrophic failure of equipment. Additionally, it can be a source of impulsive electrical and
radiative noise that may adversely affect power quality and interfere with radio communications and
reliable performance of digital electronic circuitry. In many applications, the occurrence of PD cannot
be tolerated regardless of its damaging effect on electrical insulation. Manufacturers of high-voltage
components and equipment, like high-voltage bushings and circuit breakers, have long been required
to specify maximum PD levels at operating voltages.

Even under controlled conditions for well defined discharge-gap configurations, PD phenomena are
complex, non-stationary stochastic processes that remain poorly understood. Extensive academic and
industrial research, especially in Europe and Japan, is now underway to address the problems of
understanding the physics and chemistry of PD and of developing improved PD-measurement
methods and standards. At the present time, the existing national and international standards for PD
measurement are being reviewed and revised [109, 110, 111]. It should be noted that the
present standards for PD measurement tend to significantly influence the design of commercial PD-
test equipment that are now sold by the manufacturers. Because the standards are conservative and
represent a kind of lowest common denominator, they do not embrace many of the advances from
recent laboratory research. In this respect they may tend to inhibit progress in practical
implementation of new approaches to PD measurement and data analysis.

A major obstacle to the development of more useful and precise standards that reflect advances in
the understanding and measurement of PD can be attributed to the conventional approach of
quantifying PD magnitude in terms of charge (or apparent charge) usually expressed in picocoulombs
(pC). Most commercially available PD measurement systems have an output meter or recording
device that indicates PD level in pC. The problem is that the significance of a reading expressed in
units of charge depends entirely on the reliability of the calibration procedure that is adopted. In
general, for most high-voltage equipment, the calibration cannot be performed with a degree of
precision sufficient to allow a meaningful assignment of charge units to a detected PD pulse [112].
This imprecision stems from a lack of knowledge about the equivalent circuit between the PD source,
the location of which is seldom known, and the PD detector. For some electrical equipment, such
as generators, the complexity of the intervening circuits may render calibration by conventional
methods nearly useless [113]. Those intervening circuits may encompass a multitude of
resonances. Moreover, in practical situations, like those encountered in substations, external noise
can severely limit the sensitivity of PD measurements. Despite these problems and limitations, the
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importance and usefulness of PD testing remains. The possibility of abandoning PD testing has never
seriously been considered. Therefore, the possibility of improving PD testing needs to be considered.

Relatively recent research on the properties of PD phenomena have shown that there may be
alternative approaches to quantifying PD. These alternative approaches may be able to overcome the
difficulties encountered when attempting to calibrate PD in terms of charge units. The alternative
approaches may also provide more information about the nature of the defect site at which the
observed partial discharges occur [114]. Information about such characteristics of the discharge
as PD-pulse shape, pulse-to-pulse or phase-to-phase correlations of PD, and various conditional and
unconditional PD-pulse amplitude and phase distributions can be used to provide afingerprint of the
phenomenon. Measurements of these discharge properties are not susceptible to the large
uncertainties encountered in present attempts to calibrate PD detectors in charge units.

Advances have also been made in the application of acoustic and time-domain reflectometry
techniques to pinpoint the location of PD in practical systems [115, 116, 117, 118],
especially transformers and cables. Digital filtering techniques are presently being tested for
automation of noise reduction which show promise for enhancing the sensitivity and reliability of PD
measurements in the field [118, 119]. With the advent of fast PC-type computers that have
expandable memory capability, it has now become feasible and relatively inexpensive to digitize and
record large quantities of data about the properties of PD in a relatively short time [120].
Compact digital recording systems can now be employed both for factory and field testing of high-
voltage apparatus. Under some conditions, on-line, real-time data recording may be advantageous
and cost-effective.

Detailed analysis of recorded PD data can be performed at any time using sophisticated statistical
methods. Permanent records of PD activity in equipment can be established from the time of
commissioning. Presently, stochastic and neural network analysis techniques are being applied to the
interpretation of PD data from laboratory experiments [120, 121, 122, 123]. These
advanced analysis techniques show promise in allowing more meaningful use of PD data to provide
a measure of insulation integrity. Although adatabaseapproach to PD measurement has obvious
advantages, its adoption by the industry and its use in standard measurement practices still appears
remote. More work is needed to validate this approach and to prove its cost-effectiveness before
there will be wide-spread acceptance by the industry.

Power-transformer lifetime extension : Reliably extending service lifetimes of power equipment beyond the
original design lifetimes is generally desirable. But such extension for power transformers is
especially important because their replacement cost is so high. The average life of power
transformers in service in the U.S. electric-power grid is 31.8 years for a design lifetime
conservatively estimated at 30 years [74]. The failure rate ranges between 1.8 percent to 2 percent
per year [124]. This indicates that power transformers are already being kept in service beyond
their design lifetimes. Transformers represent the largest part of the capital investment in new
transmission and distribution facilities, typically 20 percent of the total cost; no other single piece of
equipment has greater effect on systems stability, or on the number of customers interrupted. The
loss of a single power transformer can mean multi-million dollar losses for a utility or business. It
is estimated that the utilities’ investment in transformers in the United States is as high as several
billion dollars.

EPRI has written a set of Guidelines for life extension of power equipment that includes discussions
on major substation equipment maintenance practices, condition-assessment techniques, and
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decision-making process for equipment replacement or refurbishment [125]. Areas covered
include routine maintenance and inspection procedures, common tests performed as part of condition
assessment program, reasons for tests and use of test results, and factors to consider when deciding
on refurbishment or replacement of substation equipment. This is closely tied to the RCM program
described in the previous subsection.

The transformer full-load and overload capabilities are determined primarily by the hottest temperature
in the windings. This temperature is not measured, however, but estimated from temperature
measurements in the transformer oil either at top of bottom of the transformer, according to guides
of the Institute of Electrical and Electronics Engineers (IEEE) [126, 127].

The biggest effect of heating in the transformer is deterioration of the insulation. Diagnostic tests
include tensile strength and degree of polymerization of the paper insulation, and dielectric constant
and loss measurements to monitor capacitance and conductance to determine the thermal age of the
transformer. These measurements are very coarse and are not performed in real time. Improved
condition monitoring through the use of in situ sensors together with better knowledge of the
mechanisms of transformer aging are needed to provide a more realistic assessment of transformer
health. This would permit the utilities to extend the usable lifetimes of power equipment beyond the
conservative estimates used today without increasing the risk of failure.

2. TRADE

In the area of trade, there are at least two subjects of importance to the U.S. electric-power industry,
its customers, and its equipment suppliers. The first is equity in trade, as affected by the accuracy
of the metering of electricity. Trade in the domestic market dominates here. The approximately $200
billion of electric energy sold within the United States each year is subject to revenue metering at
least three times between generation and end use, so metering affects at least $600 billion in
transactions. Equity in trade is also important to international trade in electricity because the United
States both imports electricity from, and exports electricity to its neighbors, Canada and
Mexico [128]. A second trade subject of importance is access to foreign markets for electrical
equipment manufactured in the United States. Access is sensitively dependent on the state of
international test standards for electrical equipment. These subjects of metering accuracy and test
standards are discussed further below.

2.1 Metering Accuracy

The distribution of the electric energy (kilowatt-hours) sold toTable 4: ELECTRIC ENERGY
SOLD, BY CONSUMING

SECTOR (1975 and 1995)

Percent
Sector 1975 1995

Residential 33.8 34.7
Industrial 38.2 33.5
Commercial 24.1 28.7
Other 3.9 3.1

100.0 100.0

various sectors of the U.S. economy, as a percentage of all
electric energy sold, has shifted somewhat during the period from
1975 to 1995, as shown in Table 4 [129]. Sales to residential
and commercial customers have grown in relation to sales to
industrial customers.

Note that residential customers require the largest number of
points of delivery, followed by commercial customers, and then
industrial customers. Thus, the relative growth in the residential
and commercial sectors suggests that the suppliers of electricity
must concern themselves with such key issues as equity in metering, and efficiency and load
management, at a much larger number of delivery points.
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For many years, meter manufacturers have produced polyphase induction watt-hour meters for
commercial revenue metering. These meters track energy levels by counting the mechanical rotations
of a magnetically driven disk that operates something like a motor. These meters have been
developed to a high level of reliability and offer uncertainties of 0.5 percent in energy measurements.
Now the meter manufacturers are producing new electronic watt-hour meters with improved
capabilities. These meters have uncertainties approaching 0.05 percent. Further, depending on
design, these meters can respond to frequencies much higher than the 60 Hz fundamental of the
power line; therefore, they can measure the energy in harmonic frequencies (multiples of 60 Hz) as
well.

Presently, the performance of both induction and electronic watt-hour meters used in revenue metering
is established by a chain of calibrations. The highest level in this chain is the national standards
maintained by NIST. NIST uses the national standards to calibrate a relatively small number of
highly accurate intermediate standards from industry, about 50 per year. These intermediate standards
are themselves electronic watt-hour meters. These standards are then used to calibrate an even greater
number of other intermediate standards, and so on, in a fan-out pattern until there are enough
intermediate standards to support the calibration of an estimated 10 million watt-hour meters in the
United States each year. At each point of calibration in this chain, the uncertainty achievable is
inevitably degraded (increased). Therefore, NIST must maintain a very low level of uncertainty to
assure that the uncertainty remaining at the end of the chain is sufficiently low.

At present NIST can calibrate the highest level of intermediate standards to an uncertainty of 0.01
percent in the absence of significant harmonic content. This level of uncertainty enables the
calibration chain to support revenue meters with uncertainties down to 0.1 percent. This capability
has been sufficient to date because meter manufacturers have not yet been marketing their new
electronic watt-hour revenue meters as having uncertainties under 0.2 percent. However, if the meter
manufacturers wish to market their revenue meters at uncertainty levels under 0.1 percent, then
NIST’s capability will have to be improved to provide adequate support through the calibration chain.
Further, if the meter manufacturers or their customers want the sensitivity of the meters to higher
frequencies evaluated by the calibration process, then NIST’s capability will again have to be
improved. The issue of harmonics is discussed further in Section 4.2 of this chapter. The electronic
meters also have the ability to monitor the quality of power delivered to the load, which inherently
requires the ability to respond to higher frequencies. The questions of which parameters are the most
important to monitor are being addressed by standards committees and are discussed in Section 4 of
this chapter.

2.2 International Test Standards

The committees of the International Electrotechnical Commission (IEC) that set international standards
for electric-power equipment comprise world membership but are predominantly European. Further,
the participants often represent multinational European companies that can send representatives from
more than one country to a given standards-writing committee. In contrast, the standards that U.S.
manufacturers of electric-power equipment follow are sourced largely in the committees of the
Institute of Electrical and Electronics Engineers (IEEE); these committees have a largely North-
American membership. In this divergence, there is potential at least for development of international
standards by the IEC that promote the interests of European companies at the expense of U.S.
manufacturers. Standards may then bede factotrade barriers, especially if the U.S. companies do
not have access to the same measurement capability as their European competitors for proving
compliance. Under these conditions, U.S. companies can be effectively excluded from selling in
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Europe and other parts of the world. The goal of ensuring fair trade in electrical-power equipment
gives rise to the need for maintaining equivalence in international test standards and supporting
measurement capability so that all manufacturers can meet the same requirements.

An important example of this problem arises in recent revisions of IEEE [98] and IEC [99] test
standards governing high-voltage test techniques used for ensuring reliability of electric-power
equipment. Although the standards do not define tests for specific equipment, such as transformers
and generators, they do establish requirements for the standard waveforms and measurement systems
used in the equipment testing. The two standards have traditionally been nearly identical in their
requirements, but in the latest revisions there have been some important changes resulting in
differences between them. Both have formalized the concept of reference systems; reference systems
have stricter measurement requirements placed upon them and are used to calibrate other measurement
systems intended for routine test-laboratory use. However, the IEC standard introduces the concept
of accredited laboratories and measurement systems, whereas the IEEE standard does not. Such a
difference may result in a trade barrier.

3. GLOBAL WARMING AND HEALTH EFFECTS

3.1 Airborne Emissions

Airborne emissions have been of particular concern to the electric utilities since the implementation
of the Clean Air Act of 1990. Specifically, the utilities’ concerns center around two aspects of the
act: (1) global warming (related primarily to emissions of CO2); and (2) acid rain (related primarily
to the emission of SO2). The matter of global warming is currently the lesser concern of the two
since electric-power plants account for less than one third of all CO2 emissions in the United States.
Additionally, it can be argued that the conversion of fossil-fuel devices to electrical replacements (as
discussed below) actually reduces the emission of global warming gases.

However, the production of SO2 is of more immediate concern to the utilities since 57 percent of all
electricity produced in the United States is generated in coal burning plants (which emit SO2); and
the industry is being required to reduce SO2 emission by 10 million tons by the year 2000 [65]. This
change is being enforced by issuingallowancesfor SO2 production [130]. At the present time
there are sufficient allowances and adequate technologies in existence for the utilities to operate.
However, there is concern that, if new plants are built, there will be insufficient allowances available
to permit operation of these plants. The answer to this concern is being sought from new
technologies such as gasified coal burners and improved flue-gas scrubbing.

3.1.1 Sulfur hexafluoride

Sulfur hexafluoride (SF6) is the most commonly used insulating gas in electrical systems. Such use
accounts for about 80 percent of all uses of SF6 produced worldwide [131]. The extremely high
global warming potential and long atmospheric lifetime of SF6 [132] has recently raised the
concern of the EPA and others [133] about the environmental impact of the inevitable release of
SF6 into the atmosphere from transformers, switchgear, gas-insulated substations, and transmission
lines.

Recent measurements [134, 135] indicate that the concentration of SF6 in the earth's
atmosphere is increasing at a rate of 8.7 percent per year. Because SF6 is an efficient absorber of
reflected solar infrared radiation and because its lifetime in the atmosphere is estimated to be between
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800 and 3200 years [136], its global warming potential is more than 20,000 times that of CO2.
At present, a leak rate of 1 percent per year of SF6 from power system equipment is considered
acceptable, which means that in a hundred years nearly all of the SF6 now confined by the electric-
power industry will end up in the atmosphere. Moreover, there are no economically feasible methods
in place to dispose of used SF6, if that SF6 is considered too contaminated for further use as an
insulating or arc interrupting gas in electrical equipment.

The present industrial practices for handling SF6 are no longer considered adequate or acceptable.
Proposals for new methods of controlling the release of SF6 into the atmosphere are under
consideration by appropriate national and international standards committees, such as the IEEE
Committee S-32-11 on Gaseous Dielectrics. Among the proposals under consideration are:
(1) development of more realistic standards for the purity of recycled SF6 used in equipment;
(2) elimination of unnecessary scheduled maintenance of SF6 circuit breakers which involves release
of some SF6 ; and (3) replacement of SF6 with higher pressure replacement gases, such as N2 or
SF6/N2 mixtures that have comparable dielectric strength. The use of SF6/N2 as an insulating gas in
some types of high-voltage bushings, transformers, and bus lines is a promising intermediate step in
controlling the release of SF6 [137]. Of immediate concern for development of new SF6 purity
standards is CF4 contamination. It is known that CF4 builds up in SF6 used in circuit breakers,
reduces the dielectric strength of SF6, and cannot be readily removed by the usual gas absorbers and
filtration methods. More work on the effect of CF4 on the performance of SF6 as an insulating gas
is needed. The acceptance by the industry of replacement gases such as SF6/N2 mixtures will also
require considerable additional testing and research in order to determine fully the technical and
economic impacts of such conversions.

Manufacturers of SF6 are shifting their production capacity to other products; and the cheap, abundant
supply of SF6 that the utilities have enjoyed is not likely to continue in the future. In response to
concerns raised about the environmental issues surrounding the use of SF6, the IEC has undertaken
the task of preparing a guide for recycling SF6. The guide seeks to establish acceptable levels of
impurities for used and/or reprocessed SF6 and to recommend practical methods that may ensure that
these levels are maintained. Three criteria have been recommended: total content of decomposition
by-products, humidity, and CF4 content.

In a recent meeting of the IEEE Committee on Gaseous Dielectrics, the likelihood that the
manufacturers of SF6 would not be interested in reprocessing used SF6 was addressed. Thus, it
seemed that the recycling of SF6 would more likely be done by the end user with, perhaps, a few
third-party vendors providing services for the safe disposal of spent gas and/or the recovery of
severely contaminated gas. Since, in this scenario, SF6 would be recovered and reprocessed in small
lots by the end user, the methods used for chemical analysis would need to be inexpensive and readily
applied in the field. The existing IEC and ASTM standards for establishing SF6 purity are based on
condensed-phase (liquid) analysis and are not likely to apply in this case, since gas recovered in small
lots would probably not be liquefied. Thus, there is an immediate need among the end users of SF6

for the development of gas-phase analytical methods. Also needed is further guidance in
recommending acceptable levels of contaminants. Finally, there is a need for the development and
dissemination of methods for abatement of SF6, that is, for recommended filtering materials and
procedures that may be used to limit exposure of personnel to used SF6.
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3.1.2 Electrical replacements for fossil fuel devices

Electric vehicles : Electric vehicles have long been envisioned as a possible replacement to automobiles
in order to reduce airborne emissions. In many respects the technologies exist to produce functional
electric vehicles, although a multitude of desirable technological improvements have been identified
[138]. One of the biggest technological stumbling blocks continues to be the development of
quick-charging, long-lasting, reliable, safe, and lightweight batteries. Related areas of strong interest
and concern for the electric-power utilities are: (1) how will the advent of electric vehicles affect the
existing power load; (2) how will the presence of thousands of high-power battery chargers affect the
power quality of the system; (3) what safety issues should be addressed; and (4) what standards for
electrical connections will be implemented.

The recent flurry of activity on electric vehicles was primarily driven by non-market forces,
specifically by the California legislation [139], described below, and then by the NEPA legislation
[92] which mandates that a fraction of fleet vehicles be powered by alternative fuels, with electricity
as one of the possible alternative fuels.

The California legislation was written to address the issue of air quality; that legislation contained no
additional regulation of power-plant emissions and was written entirely to address the problem of
vehicle emissions. The onus for complying with the legislation was on the automobile manufacturers
in that they were required to produce and sell vehicles at the levels that were mandated by the
California legislation. The utilities did assume some responsibility in supporting the goals of the
legislation by actively working with vehicle manufacturers and other interested parties to facilitate
the entry of electric vehicles into the market. However, their direct responsibility in supporting the
legislation was in delivering reliable high-quality power to the battery charger, which was perceived
to be readily achievable.

The primary concern expressed by the utilities was that no institutional barriers should impede the
entrance of electric vehicles to the market, and the utilities have taken an active role in promoting the
use of electric vehicles. The EPRI-sponsored Electric Vehicle Infrastructure Working Council (IWC),
for example, was formed to address issues of adequate infrastructure. Participants include: utilities,
vehicle manufacturers, government agencies, and testing labs.

The utilities' calculations show that, at the levels mandated by the California legislation, the present
generation and transmission capacity can support electric vehicles well into the next century, provided
that the added load due to vehicle charging can be properly managed [140]. That is, most vehicle
charging would be structured to occur during off-peak hours. There is some concern that the local
distribution system may need to be upgraded to accommodate the added load. For this, the utilities
need accurate information to model the load added to the local distribution systems due to vehicle
charging. These data include: estimates of market penetration, demographics for vehicle ownership,
patterns of vehicle use, and load profiles for battery chargers.

There is the possibility of degradation of power quality due to battery chargers, which is of concern
to the utilities. The vehicle charger load corresponds approximately to the electrical load of an
average household, and this load would be switched in and out according the battery charging cycle.
The utilities need, and are actively developing, procedures to ensure the power-quality performance
of battery chargers.
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There is added exposure of the vehicle occupants to magnetic and electric fields and at least some
public perception of added risk to health. The IWC did view magnetic fields measurements as a
significant issue, and EPRI was supporting the development of measurement procedures for electric
vehicles. However, as a matter of policy, the IWC had chosen not to define magnetic field exposure
as a health issue.

In summary, there are significant technical challenges that need to be overcome to make electric
vehicles viable alternatives to internal combustion engine powered vehicles; however, these challenges
do not lie with the utilities.

Lawn mowers : Interestingly, internal combustion lawn mowers have recently been identified as a
substantial source of air pollution [141]. In fact, new lawn mowers purchased in 1997 will have
to meet EPA-dictated limits on emissions of hydrocarbons, carbon monoxide, and nitrogen oxides.
The use of electric lawn mowers is being promoted by both the utilities and environmental groups
as an inexpensive and clean alternative to gasoline powered mowers. (A year’s worth of lawn
mowing with an electric mower costs less than $4.) No significant technology needs are evident in
this area, but this does represent a good example of the trend toward using electricity to reduce
airborne emissions.

3.2 Electric and Magnetic Field Effects

Since the early 1970s there has been a concern over the possible effects on human health of electric
and magnetic fields (EMFs) associated with electric-power equipment and appliances. The concern
was heightened in 1979 because of an epidemiological study performed by Wertheimer and Leeper
that indicated childhood deaths from cancer were two to three times more likely if children lived
within 40 m of a high-current power line. Exposure to magnetic fields was identified as a possible
factor in their findings, but the field strengths used in the study were estimated, not measured
[142]. Many subsequent studies have been made, but the evidence to date is inconclusive with
no incontrovertible evidence relating fields to cancer. A working group of the Conférence
Internationale Des Grands Réseaux Electriques (CIGRE) concluded that the evidence pointing to
magnetic fields as a cause of cancer is weak, and the risk factor is likely to be low. But future
epidemiological studies on human populations may be inadequate to definitively answer the question
of risk; exposure studies on animals and cells may play a critical role [143].

The accurate measurements of EMFs is of great importance in both epidemiological and laboratory-
exposure studies. For example, three-axis magnetic field probes used for determining the field
strengths in air, such as in the vicinity of power lines and electrical appliances, measure the average
field within their volume. For non-uniform magnetic fields, the average that is measured depends
upon the orientation of the probe with respect to the magnetic field source and the size of the probe.
One technical challenge that has been addressed is the determination of the probability distribution
of errors because of averaging effects of a three-axis probe when measurements are made near many
electrical appliances [144]. The study illustrates the care that must be taken when these probes
are used for field measurements near appliances, where the error may be close to 20 percent of the
actual value.

Three major technical challenges related to studies of the biological effects of extremely-low-
frequency induced electric field exposures for cells and tissue are these: (1) modeling and
experimental verification of induced electric field exposures for cells near confluence, i.e., closely
spaced cells during in vitro studies; (2) experimental verification of equivalent electric-circuit models
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assumed for cell membranes having ion conducting channels; and (3) noninvasive measurements of
currents induced in biological systems by external magnetic fields. These are discussed below.

3.2.1 Modeling and experimental verification

Induced electric fields in cell culture media for widely dispersed cells in suspension are readily
modeled, as illustrated in a number of publications [145, 146, 147, 148, 149]. The
fields are also readily verified experimentally [145, 148, 149]. The success of the modeling hinges
on the fact that widely dispersed and suspended cells have negligible proximity effects on each other.
In a common configuration for cell-culture studies, cells are grown on the bottom of cell-culture
dishes close to one another. The electric field at the surface of a given cell membrane, which is
thought to be thesite of actionfor the electric field, will be influenced because of perturbations of
the field by nearby electrically polarized cells. These cells can be thought of as dielectric objects,
with interiors of electrically conducting cytoplasm. The dielectric objects also have surface charges,
arising from the ions in the culture medium. The problem is further complicated by the various
shapes that different cell species can have while attached to the bottom of the culture dish. The
problem is twofold, that is, theory must be developed and must also be verified experimentally with
measurements. For example, while there is theory to describe a single, charged spherical dielectric
in a uniform electric field, the theory does not consider field perturbations at the surface of the sphere
due to proximity effects of the nearby charged spheres [150]. While measurements of electric
fields in culture medium can be made with a dipole electric-field probe, measurements of the
perturbed electric field near the surface of cell membranes will be more difficult; that is, the
perturbing effects of the field probe must be understood. It is noted that fluorescence techniques that
have been used to measure membrane potentials will not work in the present case because of the very
low electric-field strength levels (∼10 µV/cm).

3.2.2 Experimental verification of equivalent-circuit models

An electrical model of a biological cell used by researchers includes the assumption that the cell
membrane and ion conducting channels that penetrate the membrane can be represented as a capacitor
(the membrane) and resistors (the ion channels) in parallel [151]. One method for verifying
aspects of this model is by applying alternating extremely-low-frequency electric fields across a planar
membrane and examining the real and imaginary components of the current through the membrane
for one or more ion channels, that is, as the frequency of the electric field is varied, the rms value
of the current through the resistors should remain unchanged. The current levels are in the
picoampere range and a careful accounting of the phase shifts that occur in the detection circuitry is
required to monitor the resistive current successfully.

3.2.3 Non-invasive measurements of currents induced in biological systems

Invasive measurements in rat cadavers using a dipole electric-field probe have been described by D.L.
Miller [152]. While there are numerical modeling techniques for calculating currents and electric
fields induced in biological systems by external extremely-low-frequency magnetic fields [153],
experimental verification of the theory using noninvasive measurement techniques has not been
reported in the technical literature. That is, while measurements can confirm gross predictions of the
model, such as total current passing through the feet of an exposed human or animal on a grounded
surface, no experimental checks can be made regarding the current in different regions of a
heterogeneous body [154, 155].
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4. POWER QUALITY

In the last decade, power quality has emerged as a major topic of interest to electric utilities and their
customers, and indirectly to almost all of the manufacturers of equipment that depend on a supply
of good qualityelectric power. This emergence has two principal causes: increased sensitivity of
some electronic loads with greater dependence upon their undisturbed operation, and the development
of sophisticated instruments capable of on-site monitoring of disturbances in the power supply. The
major types of disturbances are surges, swells, sags, interruptions, and harmonics. Surges are
transient overvoltages of several times the normal line voltage and lasting only microseconds. The
largest threat from this type of power disturbance is the breakdown of electrical insulation or
semiconductors, either in the power equipment in the power system or in the end users' equipment.
Swells are overvoltages up to twice the normal line voltage which last for up to several cycles of the
power-frequency voltage. Voltage sags are under-voltages as low as nearly zero, for times ranging
from milliseconds to seconds. What utilities call aninterruption varies with interpretations of
regulations issued by public service commissions. Generally, an interruption of a few cycles is not
reported, and yet it can cause complete shutdown of an industrial process or data-processing system.
Harmonics generated by non-linear loads are also of growing importance with the proliferation of
electronic equipment using a capacitor-input rectifier in their internal power supplies. Significant
imbalances due to harmonics can overload neutral conductors and wye-delta distribution transformers.

Equipment manufacturers view making equipment more immune to disturbances as an expense which
would place them at a disadvantage to their competitors. Of course, purchasing low-priced (but
disturbance-sensitive) equipment can appear cost-effective in the short run but be more costly in the
long haul. Thus, the development of test methods and performance criteria for equipment immunity
is needed by manufacturers of sensitive equipment, by the electric utilities, and by end users.

In the past, detecting power system disturbances was not an easy task for field instruments, except
for the more obvious disturbances associated with significant voltage sags causing lights to dim or
causing full interruptions. Major organizations, such as the U.S. Navy, IBM, General Electric, and
Bell Laboratories, developed special, and sometimes bulky, recording systems. In the mid-1980s, a
revolution occurred in the instrumentation: Voltage disturbance recorders were developed, with on-
board processing and hard-copy print-out capability; and these recorders were no larger than a large
briefcase. These were easy to connect wherever disturbances were suspected, and hundreds of them
were deployed. This proliferation of disturbance monitors raised awareness of power quality as a
utility concern.

The proliferation of disturbance monitors also demonstrated the incompatibility of data recorded by
instruments made by different manufacturers. The manufacturers used different algorithms to process
the measurement data and to provide the most meaningful interpretations of the data. Additionally,
the definitions used by different manufacturers to describe a disturbance were not the same. For
instance, when reporting asurge, one manufacturer filtered out the power-frequency voltage, calling
the surgeonly the deviation from the sine wave, while another manufacturer would report as the
surgethe actual peak that occurred, including the sinewave voltage.

A recent summary of surveys of the electrical environment pointed out the difficulty of characterizing
that environment in the absence of standard practices more generally. That is, the results of the
survey were complicated not only by differences in instrumentation, as discussed above, but also by
several other factors. These factors included variations in the threshold settings used in each survey,
variations in the monitored locations, and variations in the sources and propagation characteristics of
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the various power disturbances [156]. Melhorn and McGranahan [157] conclude the
following: "With advances in processing capability, new instruments have become available that can
characterize the full range of power quality variations. The new challenge involves characterizing
all the data in a convenient form so that it can be used to help identify and solve problems." Ten
years after this problem was recognized, and after an IEEE working group was created to develop
a Recommended Practice addressing this problem, a standard was published by IEEE (Std 1159).
This standard attempts to address the situation but has little chance, by itself, to make manufacturers
change their entrenched algorithms. In the course of updating of IEEE standards, it is possible that
the problem might be addressed. Upon the request of instrument users, task forces to that working
group have been established to develop standards and protocols on sampling rates, data processing,
and reporting format.

4.1 Correction of Power Distortions

Several types of the FACTS devices that utilize power-electronic controllers to regulate the flow of
electric power through transmission lines can also correct for power-quality problems. The FACTS
devices were described in Section 1.1.1 of this chapter. When used in distribution systems for
improvement of power quality, such devices are referred to ascustom power devices[158]. They
are described in the next section.

4.1.1 Custom power devices

Minor voltage disturbances on distribution circuits can have major consequences. Even a voltage sag
for as little as 0.1 second can cause heavy-production and product-quality losses. Substandard power
is expected now to be limited to as little as one half-cycle without having significant effects. When
an outage or voltage sag exceeds a few cycles, motors, machine tools, and robotics cannot maintain
the precise control of the processes they perform. Lightning strikes are indirectly responsible for a
large percentage of all power-system outages and dips, with a typical strike causing flashover and
circuit breaker opening for 5 to 30 cycles over a large service area. Other sources of disturbances
include motor starting, capacitor switching, faults, and intermittent heavy loads.

Recovery from a disturbance can lead to further disturbances. Consider the action of arecloser. A
recloser is an automatic, normally closed circuit breaker that opens when a fault occurs and attempts
to reclose, up to several times for some models, before locking out. If the fault is not cleared, usually
by the third attempt, the recloser locks out, interrupting power to customers. Neighboring feeder
circuits witness marked voltage dips during the reclosing intervals; the line voltage is depressed or
distorted for several cycles after reclosing due to the high in-rush current of the motor loads and
various circuit oscillations that occur during each startup.

Customers may employ their ownlocal solutionsto power irregularities, such as uninterruptible power
supplies (UPS), surge suppressors, backup generators, and alternate feeders with mechanical switches.
Some of these solutions are costly, of the order of hundreds of dollars per kilowatt-hour, and
inefficient, having as high as 20 percent energy loss [158].

Custom power devices, applied to the distribution system itself, can provide moreglobal solutions
to power quality problems. They are the dynamic voltage restorer (DVR), the solid-state breaker
(SSB), and the distribution-system version of the static compensator (STATCOM). The transmission-
system version of the STATCOM was discussed in Section 1.1.1 of this chapter. The DVR is similar
to that of the STATCOM except that the DVR transformer is connected in series with the line, while
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the STATCOM transformer is connected across the line, as a shunt. The SSB can be used to obtain
faster opening and reclosure times than conventional circuit breakers. The SSB consists of back-to-
back thyristors in series to get the desired voltage rating. There are two types of SSBs: the silicon-
controlled rectifier (SCR) type and the gate-turnoff thyristor (GTO). The SCR breaker turns off at
the first zero of the current which, although it has a delay of possibly a few milliseconds, may still
be acceptable for many applications. The GTO turns off immediately when a control pulse is
received at the gate input, providing instantaneous control of the distribution circuit. The SSBs can
be used to switch from the primary feeder circuit to the secondary very quickly when a fault or other
disturbance is detected on the primary feeder.

The technical needs for the successful implementation of custom power devices are similar to those
described for FACTS technologies in Section 1.1.1 of this chapter: the need for numerous, low-cost,
accurate sensors to be installed throughout the transmission systems to monitor power-system
disturbances, and the need for communication systems to be put in place to monitor the sensors and
to coordinate the operation of the custom power devices. Custom power devices will rely on rapid
and accurate fault location to respond correctly to disturbances and to maintain high power quality.

4.1.2 Surge suppressors

The widely used termsurge suppressoris symptomatic of some misconceptions that still pervade the
industry. Properly speaking, a surge can be diverted, but never suppressed. Devices offered by the
industry under the IEEE-approved name of surge-protective device (SPD) range from the large
arresters used throughout a utility system to tiny electronic-level components at the line-cord entry
of appliances. Since the introduction of low-cost SPDs using metal-oxide varistors in the mid-
seventies, their use has mushroomed to the point where almost every measurement of surge voltages
inside buildings has become irrelevant because such measurement now yields only the residual
voltage from the SPD action. New instrumentation is needed to characterize the surge environment,
capable of measuring the energy that may be involved in a surge event, not the voltage appearing
across the line.

Another issue resulting from the proliferation of consumer-type SPDs, and the highly competitive
nature of the business, is that some improperly designed SPD packages may present a fire hazard
because of uncontrolled failure modes. The Underwriters Laboratories have recently recognized that
potential problem and are now in the process of promulgating a revised standard which addresses this
concern.

Traditionally, the electric utilities have viewed their domain as bounded by the revenue meter at the
customer’s premises, for power quality as well as other concerns. Within their normal domain, some
electric utilities are now offering SPDs for installation at the service entrance to support power
quality. Increasingly, however, the utilities are working on the other side of the revenue meter, too.
For example, they are offering plug-in SPDs to be installed by end users. The motivation is two-fold:
offer the customer a service that will minimize customer complaints, and create an opportunity for
additional revenue for the utility. Further, the electric utilities are increasingly open to discussing
with customers instances of power-quality problems that are related to the fixed wiring or equipment
of the end user, rather than to the utility system proper.
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4.1.3 Lightning protection

Lightning strikes to power-transmission and power-distribution equipment are a major cause of system
failures and power interruption in the United States. The utilities have an obvious interest in reducing
the vulnerability of power systems to the direct and indirect effects of lightning. Research sponsored
by EPRI, Hydro Quebec, and others continues to address the problems of achieving a better
understanding of lightning and of designing better lightning protection systems [159].

New techniques for lightning protection are presently being tested [160]. These include early
streamer emission [161] and laser triggering [162]. Although standards for conventional
lightning protection systems have been issued by the National Fire Protection Association and others,
these do not encompass new techniques and are not always applicable to power-system components
such as overhead transmission lines. Generally, proposed new lightning protection systems are
significantly more costly than conventional systems, and unresolved issues remain about the cost-
effectiveness of these new systems. At issue, for example, are the tests that have been performed to
measure the comparative effectiveness of different lightning-protection systems [159, 163]; and
questions have been raised about the validity and usefulness of laboratory simulations of
lightning [164]. More work is needed to develop and validate model calculations of lightning-
protection effectiveness as well as both laboratory and outdoor tests of protection systems.

4.2 Harmonics

The proliferation of adjustable-speed drives (ASDs) and the presence of other non-linear electrical
loads in distribution systems can cause significant degradation of power quality. They generate
harmonics and subharmonics of the 60 Hz power frequency. These unwanted frequencies distort the
power waveforms and can interfere with the operation of sensitive electronic equipment, both in other
parts of the plant generating the harmonics and in the distribution system. Non-linear loads draw a
non-sinusoidal current and return the distorted current waveform to the distribution system. The
distorted current waveform flowing through the distribution system impedance causes distortion of
the voltage waveform.

In addition to the corruption of power quality, the presence of non-linear loads can result in
significant currents in the neutral conductors. Distribution systems are designed so that the three-
phase, four-conductor circuits supply closely balanced single-phase loads and so that the neutral
conductor carries a minimal current imbalance. According to earlier versions of the National Electric
Code (NEC) [165], the neutral conductor may be downsized from the phase conductors for cost
savings. Non-linear loads cause addition, not cancellation, of phase currents in the neutral which can
lead to overheating of the neutral-current return conductors and of wye-delta transformation
transformers, resulting in shortened transformer lifetimes. More recent editions of the NEC have
recognized this problem and have stipulated appropriate sizing of the neutral conductor.

The distorted voltages and currents produced by non-linear loads, such as ASDs, can also affect the
accuracy of the metering of electric power and energy. Typically, it is the current waveform that is
corrupted by the non-linear loads. If the voltage waveform remains sufficiently pure, that is, if it does
not contain significant harmonic components, then the meter registration remains within the design
specifications in general. However, if the voltage waveform is distorted significantly, then the
metering errors can become large. Filipski and Arseneau have measured various types of wattmeters
and watt-hour meters and have demonstrated that errors exceeding 1 percent in induction watt-hour
meters can occur with waveforms typical of those measured for ASD loads [166]. They
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recommend avoiding the use of inductive meters in nonsinusoidal situations, both for this reason and
because of possibility of mechanical damage, which can occur when the meter is subjected to a
change in the direction of energy flow several times per minute.

The two somewhat different technical challenges here: (1) to mitigate harmonic content in the first
instance, and (2) to ensure metering accuracy in the presence of significant harmonics when they do
arise. Harmonic content may be mitigated through the use of the custom power technologies, such
as the STATCOM described above, which can absorb harmonics generated by the load, and also
through the use of filters inserted in the distribution system. EPRI has a project to design hybrid
transmission-system filters and to demonstrate them in the field. These hybrid filters comprise a
combination of passive and active filters to minimize transmission-system harmonics. The hybrid
filters are intended to overcome the problems associated with the use of the existing technology of
passive filters, such as resonance problems that occur with changes in power-system impedance and/or
component values. The hybrid filters are expected to be lower in overall installed cost than current
passive-filter technology for large installations [125].

4.3 Power Outages

The most severe form of loss of power quality is the total power outage. This may result from storms,
excess loads, broken power lines due to accidents, and sometimes unknown causes [167]. During
times of outages, the most immediate concerns are the identification of the extent of outage and the
determination of the cause. Currently, this information is derived from customers’ complaints and
subsequent on-site verification by utility personnel. In the future, these needs could be resolved by
remote meter reading and/or sensors on all distribution transformers that would allow the utility to
immediately determine the location of faults, without relying upon customers’ phone calls [125].

Another area being addressed is the need for damage-assessment data for power systems after a
severe storm. During and after severe storms, the conventional communications and instrumentation
systems may be disabled. Real-time satellite event monitoring may be useful to provide high-
resolution image data that can be used to assess the extent of damage and support the dispatch of
repair crews. Night-imaging data may also be useful in identifying malfunctioning street
lighting [168].

5. SUMMARY

This chapter outlined the most significant technical needs that arise in response to several drivers of
the electric-power industry: (1) efficiency, reliability, and stability; (2) trade; (3) global warming and
health effects; and (4) power quality. Those needs reflect challenges to the generation, transmission,
distribution, and use of electricity. The needs arise from technologies that play quite different roles
in the overall picture: some may cause problems on the power lines; some may increase sensitivities
to those problems; or some may solve problems. Here are examples of each type. Switching power
supplies offer high energy efficiency but can contribute to irregularities on the power lines. Low-
power microelectronics have provided tremendous capabilities at minimal cost but can be highly
sensitive to power-line irregularities. Technologies such as optical sensors, power-flow controllers,
and superconducting power equipment may prove important to the solution of power problems.

The next chapter begins with a summary of the technical needs described in this chapter and then
distills from that summary the most critical long-term and short-term needs for which NIST assistance
seems needed, with a special focus on electrical measurements for transmission and distribution.
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CHAPTER THREE: IMPLICATIONS FOR NIST

In this chapter, the technical needs discussed in Chapter Two are extracted and related to the
measurement capability or related technology needed from NIST. While the needs addressed arise
in the generation, transmission, distribution, and use of electricity, the focus here is principally on
transmission and distribution, and specifically on electrical quantities. Other needs may be just as
important. Based upon the information in the first two chapters, the most critical long-term and short-
term needs related principally to electrical quantities are identified.

Further, the focus here is on the technical needs driven by the major changes taking place in the
electric-power industry and by that industry’s effort to respond by employing appropriate
technologies, including emerging technologies. This chapter does not address, in as much detail,
technical needs of a long-standing nature, such as those related to reliable, high-quality calibration
services. NIST is currently meeting these needs and will endeavor to do so for the foreseeable future.

NIST’s role in support of the electric-power industry and its customers is much like its role in support
of other U.S. industries and their customers. NIST does not develop measurement capability that
individual companies can provide for themselves. Rather, NIST acts when needed measurement
capability is beyond the reach of individual companies and when providing that capability will have
high economic impact for the nation. Companies seek NIST’s help for several reasons. The
companies may need NIST’s special measurement expertise, which extends across many fields of
technology, for the development of new measurement capability or for the comparison or validation
of existing measurement capability. The companies may need NIST’s impartiality, which enables
NIST’s measurement solutions to be adopted by all companies in an industry with confidence. The
companies may need NIST’s imprimatur as the lead-agency of the U.S. Government for
measurements, which enables NIST to support U.S. interests when measurement barriers bar U.S.
products from foreign markets. Further information on NIST’s role is provided, in detail, in
Chapter 2 ofMeasurements for Competitiveness in Electronics[169].

1. SUMMARY OF TECHNICAL NEEDS

In Table 5 below, 42 technical needs of the electric-power industry are presented in the third column.
The order of presentation is the order of discussion in Chapter Two, not a priority order. The specific
sections of Chapter Two in which these needs were presented are referenced in the second column.
The implications for NIST research are listed in the fourth column. The NIST organizational units
(OUs) that could appropriately respond are listed in the fifth column. The status of NIST’s response
is indicated in the sixth column:current if a responsive research program is currently in place; or
noneif no research program is currently in existence. It should be noted that a designation ofcurrent
implies only that some portion of the need is being addressed, not necessarily the entire need.

It should also be noted that individual needs listed in Table 5 may be related to other needs in the
table. For example, some of the needs represent subsets of larger needs that are present elsewhere
in the table. The manner in which each technical need is presented in Table 5 is indicative of the
manner in which it was presented in the literature or in the interactions from which the information
in Chapter Two was derived.

Of the 42 needs listed in Table 5, NIST is currently responding to 15 of them by applying available
resources, as indicated by the annotations in the sixth column. This level of response indicates both

Measurement Support for the U.S. Electric-Power Industry / NIST



46 Chapter Three: Implications for NIST

that a very large number of needs are already being addressed, and, unfortunately, that a very large
number are not, reflecting the difficulty of responding to the needs of such a huge industry.

Because of the emphasis here on electrical quantities, a very large fraction of the needs shown in
Table 5 fall within the purview of the Electronics and Electrical Engineering Laboratory, and
specifically, the Electricity Division at NIST, which has primary responsibility for electrical
measurements at NIST.

Table 5: TECHNICAL NEEDS AND IMPLICATIONS FOR NIST DERIVED FROM CHAPTER TWO

Key to Abbreviations for Organizational Units (OUs)

CSTL Chemical Science and Technology Laboratory MSEL Materials Science and Engineering Laboratory
EEEL Electronics and Electrical Engineering Laboratory PL Physics Laboratory
ITL Information Technology Laboratory TS Technology Services
MEL Manufacturing Engineering Laboratory

Section Technical Needs Implications for NIST OU Status

1. 1.1.1
1.2.1
1.2.4
4.1.1
4.3

Low-cost, accurate sensors for
monitoring transmission systems for
real-time control, state estimation, and
monitoring system disturbances (i.e.,
power quality)

Test, characterize, calibrate, and
develop sensor performance and
reliability.

EEEL current

2. 1.1.1
1.2.1
1.2.2
1.2.4
4.1.1
4.3

Communication system to query and
control transmission, distribution, and
demand-side management systems
sensors from a control center

Develop standard
communication protocols and
architecture.

EEEL,
ITL

none

3. 1.1.2 Insulation for cryogenic power devices,
such as cables, motors, and transformers

Measure electrical insulation
performance under cryogenic
conditions.

EEEL none

4. 1.1.2 Verification of AC power transfer
efficiencies in high-temperature
superconducting (HTS) power devices

Develop measurement methods
for determination of AC power
transfer efficiencies in HTS
devices.

EEEL none

5. 1.1.2 Determination of HTS device
performance under fault conditions

Develop measurement methods
for determination of HTS device
performance under fault
conditions.

EEEL none

6. 1.3 Increased efficiency and equipment
lifetime in power generation

Improved fluid-flow
measurements for power-
generation facilities.

CSTL current

7. 1.3 Increased efficiency in power generationImproved temperature
measurements for controlling
coal-fired boilers.

CSTL,
MEL

none
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Section Technical Needs Implications for NIST OU Status

8. 1.4.1 Improved materials for lighting Evaluate performance of
materials under wide range of
lighting conditions.

PL,
CSTL,
MSEL

none

9. 1.4.1 Fundamental data for the modeling,
understanding, and design of new light
sources

Measure, accumulate, evaluate,
and disseminate standard
reference data related to the
chemistry and physics of light
emission.

PL,TS,
EEEL

current

10. 1.4.2 Methods to accurately measure
efficiencies of high-efficiency motors
and transformers

Develop standard methods for
efficiency testing of motors and
generators with low
uncertainties.

EEEL,
MEL

current

11. 1.4.2 Reduction of effects of harmonics
produced by variable-speed drives
(VSDs)

Develop mitigation techniques
to reduce harmonics.
Develop measurement
techniques to characterize
harmonics produced by VSDs.

EEEL none

12. 1.4.3 Environmentally safe refrigerants for
heat pumps

Test refrigerants with potential
for reducing ozone-depletion
and global warming.

CSTL none

13. 1.2.1 Low-cost metering-grade voltage and
current sensors to measure bulk power
exchanges that occur during wheeling
agreements and during exchanges with
independent power producers

Test, characterize, and calibrate
performance and reliability of
all newly introduced sensors.

EEEL current

14. 1.2.1 Ability to calibrate remote sensors while
in service

Develop and validate methods
for self-referencing, model-
referencing, or remote-
referencing of sensors.

EEEL none

15. 1.2.1 Timing coordination of remote sensors
for real-time control and system
monitoring

Develop and verify method for
sensors to synchronize data with
universal timing tag.

PL none

16. 1.2.1 Optical current and voltage sensors as
inexpensive, reliable remote sensors

Validate stability, sensitivity,
linearity, and accuracy of
optical current and voltage
sensors.
Aid in development of optical
sensors.

EEEL current

17. 1.2.2 Uniform controlling software for
implementation of demand-side
management, FACTS systems, and
remote meter reading

Harmonize control-system
software systems for utilities.

EEEL,
ITL

none

18. 1.5.1 Lightning-impulse reference standard Development of lightning-
impulse standards and
calibration techniques.

EEEL current
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Section Technical Needs Implications for NIST OU Status

19. 1.5.2 Sensors to monitor operating conditions
(e.g., temperature, pressure, strain, gas
composition) of power equipment (e.g.,
transformers and generators) to predict
imminent failure, to assesshealthof
device, and to determine possible failure
modes

Validate, characterize, calibrate,
and develop sensor performance
and reliability.

EEEL,
CSTL,
PL

none

20. 1.5.2 Partial-discharge (PD) detection for
monitoring electrical conditions in high-
voltage equipment (transformers,
generators, motors, cables, etc.)

Develop measurement methods
for the detection and analysis of
PD signals and relate PD
signatures to equipment
operating conditions.

EEEL current

21. 1.5.2 Calibrated measurements of PD to
facilitate comparisons of measurements
using different PD detectors

Develop PD measurement
standards and corresponding
calibration techniques.

EEEL none

22. 2.1 Improved dynamic range for power and
energy measurements to verify
performance of electronic meters

Improve measurement
uncertainties in power and
energy calibrations to 0.01
percent.

EEEL none

23. 2.2 International agreements that ensure fair
trade of electrical-power equipment

Ensure equivalence among
international test standards (e.g.,
International Electrotechnical
Commission (IEC)) and ensure
the equitable consideration of
U.S. industries in standards
formulation.

EEEL current

24. 3.1 Clean coal-burning power plants Develop standards for
cleanliness and measurement
techniques to determine
efficiency cleanliness of burning
process.

CSTL,
PL

none

25. 3.1 Advanced flue-gas scrubbers for power
plants

Measure efficiency of effluent
removal from scrubbers.

CSTL none

26. 3.1.1 Widely accepted standards for use of
recycled SF6, including levels of
impurities

Determine effects of impurities
in SF6 and assist in development
of standards for use of recycled
SF6.

EEEL none

27. 3.1.1 Environmentally friendly gaseous
dielectrics for high-voltage insulation as
a replacement for SF6

Verify chemical and physical
characteristics of SF6 substitutes
under wide range of breakdown
and operating conditions.

EEEL none

28. 3.1.2 Quick-charging, long-lasting, reliable,
safe, light-weight batteries for electric
vehicles and as substitutes for other uses
of internal-combustion engines

Verify performance of
insulation.
Measure battery efficiency.
Develop standards of safety.
Determine environmental effects
of battery disposal.

EEEL,
CSTL,
MSEL

none
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Section Technical Needs Implications for NIST OU Status

29. 3.1.2 Determination of effects of electric-
vehicle proliferation on load and power
quality

Validate models of load and
power quality effects.

EEEL none

30. 3.1.2 Confirmation of safety of electric
vehicles

Measure electric and magnetic
fields in electric vehicles.

EEEL none

31. 3.2 Measurement methods to determine field
strengths at the cellular levels for
support of biological research

Develop methods to measure
electric and magnetic fields over
microscopic areas.

EEEL none

32. 3.2 Accurate measurements of electric and
magnetic fields (EMF) for
epidemiological and laboratory studies

Develop standards for EMF
measurements.

EEEL current

33. 3.2 Validation of electrical models used to
describe ion conduction at cell
membranes due to field exposure

Experimental validation of these
models using well-defined
measurement techniques.

EEEL current

34. 3.2 Non-invasive technique to measure fields
inside animals

Develop and validate such
techniques.

EEEL none

35. 4. Test methods and performance criteria
for equipment immunity to power-
quality disturbances

Contribute to advances in the
development of consensus
standards and test methods.

EEEL current

36. 4. Compatible power-quality data recording
standards

Participate in IEEE and IEC
standards preparation.

EEEL current

37. 4.1.2 New instrumentation for characterization
of surge environments in the presence of
surge-protection devices (SPD)

Develop method to reliably
measure current in surge events
instead of surge voltage.

EEEL current

38. 4.1.2 Complete knowledge of failure modes of
SPDs to ensure safety

Determine likely failure modes
based on knowledge of surge
environments.

EEEL current

39. 4.1.3 Reliable methods for protection of
electrical transmission equipment from
lightning strikes

Develop models of lightning
protection effectiveness.
Perform laboratory testing of
lightning protection devices.

EEEL none

40. 4.2 Method of removing or preventing
harmonic distortion of voltage and
current waveforms due to non-linear
loads

Determine appropriate and
reasonable standards for
harmonic distortion levels.

EEEL none

41. 4.2 Accurate metering of power in the
presence of significant harmonics

Develop calibration methods to
determine effects of harmonics
on meter performance.

EEEL none

42. 4.3 Real-time independent monitoring of
power system via satellite

Develop communication and
data protocols.

ITL,
EEEL

none

From this list of needs, the most critical long-term needs and short-term needsrelated to the
transmission and distribution of electric powerhave been selected for discussion in the next two
sections. The selection factors considered are those contained in the Project Selection Criteria of the
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Electronics and Electrical Engineering Laboratory. This is the parent organization of the Electricity
Division. Special emphasis has been given to economic impact, immediacy of need, and the
timeliness of NIST’s possible response. The evaluation against these criteria is based on NIST’s
research in this area and on interactions with individuals in the electric-power industry.

Needs from Table 5 that did not make either of the followingcritical lists are also important, even
if deemed of somewhat less urgency and impact at this time. Some of these are addressed by the
Electricity Division for other reasons: (1) they are important to other industries, as well; (2) the
Division possesses the expertise to address the particular problems effectively; and (3) the work is
supportive of meeting thecritical needs, even if not directly focused on them.

Changes in technology, in the economic environment, or in other factors can change the relative
importance of the needs identified here for the electric-power industry. Therefore, continued close
interaction between NIST and industry will be necessary to assure proper evolution of priorities.
These interactions will be fostered through continued participation in relevant conferences, working
groups, and standards bodies. Such interaction is needed not only for planning but also for delivery
of NIST’s findings.

2. CRITICAL LONG-TERM NEEDS AND NIST’S RESPONSE

The most critical long-term needs are listed in Table 6. The entries in the table are in the same order
as in Table 5. Thus, while Table 6 selects out the most critical needs, the order within the table is
not a priority order. The discussion that follows provides a brief summary of the importance of each
of the needs. The explanation of importance, of course, is based on the discussion in Chapter One
and Chapter Two. Also included is a statement of the current programs of NIST in response and of
any needed additional efforts.

2.1 Sensors

Items 1, 3, and 4 of Table 6 are all related to the calibration and characterization of sensors for
monitoring various aspects of transmission and distribution systems. This need is becoming a
significant one for the utilities due to the increased demand for large-scale wheeling, the deregulation
of transmission systems, and the separation of the generation function of the utilities from the
transmission and distribution functions. Present NIST work is limited to developing calibration
techniques for optical current sensors. Expansion is needed to include voltage sensors as well. The
focus would be on developing calibration techniques for these devices, comparing their performance
with more traditional voltage and current sensors, and determining parameters affecting instrument
performance. Close collaboration would be needed with commercial suppliers of these sensors, and
with industrial and academic researchers who are developing the next generation of sensing devices,
in order to enhance the availability of devices for testing.

2.2 Communications Protocols

Item 2 in Table 6, related to the development of communication protocols for the utilities, is not
currently being addressed by NIST, although some related work on electronic information
technologies is being conducted. A new effort in this area is needed. It would focus on assisting
industry in the development of standards for the communication systems used by the electric-power
industry to control its systems and to interface electronically with its customers.

Measurement Support for the U.S. Electric-Power Industry / NIST



Section 2. Critical Long-Term Needs and NIST’s Response 51

2.3 Partial-Discharge Detection

Table 6: CRITICAL LONG-TERM NEEDS FOR TRANSMISSION AND DISTRIBUTION

Technical Needs Implications for NIST

1. Low-cost, accurate sensors for monitoring
transmission systems for real-time control, for
state estimation, and for monitoring monitor
system disturbances (i.e., power quality)

Test, characterize, and calibrate sensor performance
and reliability

2. Communication system to query and control
transmission, distribution, and demand-side
management-system sensors from a control
center

Develop standard communication protocols and
architecture.

3. Low-cost metering-grade voltage and current
sensors to measure bulk power exchanges that
occur during wheeling agreements and during
exchanges with independent power producers

Validate, characterize, and calibrate performance
and reliability of all newly introduced sensors

4. Optical current and voltage sensors as
inexpensive, reliable, remote sensors

Validate stability, sensitivity, linearity, and accuracy
of optical current and voltage sensors

5. Partial-discharge detection for monitoring
electrical conditions in high-voltage equipment
(transformers, generators, motors, cables, etc.)

Develop measurement methods for the detection
and analysis of PD signals and relate PD signatures
to equipment operating conditions

6. International agreements that ensure fair trade
of electrical-power equipment

Ensure equivalence among international test
standards (e.g., IEC) and ensure the equitable
consideration of U.S. industries in standards
formulation

7. Test methods and performance criteria for
equipment immunity to power-quality
disturbances

Contribute to advances in the development of test
methods and consensus standards

8. Compatible power-quality data recording
standards

Participate in IEEE and IEC standards preparation

9. New instrumentation for characterization of
surge environments in the presence of surge-
protection devices (SPD)

Develop method to reliably measure current in
surge events instead of surge voltage

Partial-discharge detection, Item 5 in Table 6, continues to offer promise as a sensitive diagnostic tool
for monitoring the integrity of insulation in cables and electrical equipment. NIST currently has a
significant program in this area, funded in part by other agencies and dedicated to developing the
technology and methodology for correctly monitoring and interpreting partial-discharge behavior. The
emphasis of this program is, and will continue to be, the accurate measurement and analysis of
partial-discharge data, with particular emphasis upon applications to cables, low-pressure dc
breakdown, and partial discharges in liquids. Issues concerned with developing new or improved
standards for partial-discharge measurements (both acoustic and electrical) in power systems will be
addressed and will be a guiding factor in future NIST research. However, an expanded effort is this
area is needed to enable faster development and transfer of detection and recording systems suitable
for industrial use.
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2.4 International Agreements

The need for authoritative and impartial U.S. representation on committees dedicated to the
formulation of international testing standards, Item 6 in Table 6, continues to grow with the
increasingly global nature of the U.S. economy. NIST currently supplies representatives to three IEC
committees related to the electrical-equipment industry and the electric-power industry, addressing
the subjects of power quality, electric-field and magnetic-field measurements, and partial-discharge
measurements. Participation in these types of international committees is important, and its
continuation should be a priority. Extension of this participation to additional committees is needed,
especially to include the standards committees on high-voltage measurements, power and energy
metering, and transformers.

2.5 Power Quality

Items 7, 8, and 9 in Table 6 are all related to power-quality issues which, as discussed in Chapter
Two, are becoming increasingly important for many reasons. NIST maintains a high-quality, but
small, project that addresses all of these items to a degree. Many of the details of this project are
defined by direct interaction with the utilities that also provide external funding.

Current NIST efforts emphasize the development of coherent national and international standards for
the definition of power quality, accurate evaluation of the general power-quality environment in the
United States, and the dissemination of guidelines for mitigation of poor power quality. Extension
of this work is needed to enable the development of new test methods and measurement techniques
that would support a truer measure of the possible effects of well-characterized power-quality
variations or incidents.

3. CRITICAL SHORT-TERM NEEDS AND NIST’S RESPONSE

The most critical short-term needs selected from Table 5 are listed in Table 7. The treatment is
similar to that above for the long-term needs. That is, the needs in Table 7 are high in priority; but
the order within the table does not reflect further prioritization. The importance of the needs are
summarized briefly in the terms addressed in Chapter One and Chapter Two. And NIST’s current
program in response is described, as well as any needed additional effort.

3.1 Replacement of Sulfur Hexafluoride

Item 1 of Table 7 is of immediate concern to the utilities because of the increased interest of the
Environmental Protection Agency in limiting or eliminating the use of sulfur hexafluoride (SF6) as
an insulating gas in electrical equipment. Establishing the performance of gases that could potentially
replace SF6 is one of the first steps in determining the impact of SF6 replacement on the electric-
power industry and its supplier, the electrical-equipment manufacturers.

NIST’s past program in this area, completed in FY 1995, focused on the characterization of electrical
breakdown in SF6. NIST’s current program in this area is directed at reviewing the available data
to identify the gases that are most promising as substitutes for SF6 in high-voltage equipment. An
expansion of this program is needed to permit the testing, and thus the validation, of the most
promising substitute gases.

Measurement Support for the U.S. Electric-Power Industry / NIST



Section 3. Critical Short-Term Needs and NIST’s Response 53

3.2 Electric and Magnetic Field Measurements

Table 7: CRITICAL SHORT-TERM NEEDS FOR TRANSMISSION AND DISTRIBUTION

Technical Needs Implications for NIST

1. Environmentally friendly gaseous dielectrics for high
voltage insulation as a replacement for SF6

Verify chemical and physical characteristics
of SF6-substitutes under wide range of
breakdown and operating conditions.

2. Accurate measurements of electric and magnetic fields
(EMF) for epidemiological and laboratory studies

Develop IEEE and IEC standards for EMF
measurements.

3. Accurate metering of power in the presence of significant
harmonics

Develop calibration methods to determine
effects of harmonics on meter performance.

Concern about exposure to electric and magnetic fields, in Item 2 of Table 7, has decreased recently,
due to a new report of the National Research Council [170]. However, many questions regarding
the possible health risks of exposure remain unanswered. Reliable measurements of the exposure
fields will continue to be critical to studies that will address these questions.

NIST currently maintains a program dedicated to the maintenance and dissemination of reliable
techniques for the measurement of electric and magnetic fields in support of biological field-effect
studies. This program is the leading effort to develop national and international standards for field
measurements. The completion of these standards is an important short-term need. NIST expects
to continue current research activities (funded in part by DOE) into at least the near future. However,
further support, if available, would be used first to extend field measurements into biological systems.
Also, efforts to address other measurement needs related to electromagnetic fields (Items 28 to 32 of
Table 5) are needed.

3.3 Accurate Revenue Metering in the Presence of Harmonics

The problem of high-frequency harmonics on the power lines, noted in Item 3 of Table 7, arises
primarily from the increased use of switching power supplies in end-use equipment. These higher
frequencies can disturb the accurate revenue metering of electric power, particularly in three-phase
systems. NIST presently has no effort dedicated to measuring the effects of higher harmonics on
power and energy measurements. New work is needed to address this problem. This topic is made
all the more important by the emergence of new electronic watt-hour meters that respond to the higher
frequencies. Specifically needed is determination of the true performance of revenue meters in the
presence of harmonics and translation of that performance into its effects on the electric-power
industry and its customers. Then, if found necessary, new measurement solutions will have to be
pursued.

4. CLOSING OBSERVATIONS

This analysis indicates that the major changes taking place in the U.S. electric-power industry are
giving rise to a broadened spectrum of measurement needs related to the transmission and distribution
of electric power. Many of these needs are already being addressed by NIST, and NIST’s findings
will have a major impact on the industry. Many more needs remain to be addressed. The shortfall
is not surprising given the tremendous size of this industry. Increased resources -- should they
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become available in the future -- can be applied effectively to the critical needs identified here.
Addressing these will have a major impact on the U.S. economy through the pervasive role that the
cost, reliability, and versatility of electricity play in the national infrastructure.

Measurement Support for the U.S. Electric-Power Industry / NIST



References 55

REFERENCES

1. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 84 (1997).

2. Measurements for Competitiveness in Electronics, First Edition, Electronics and Electrical Engineering
Laboratory, National Institute of Standards and Technology, NIST Report No. NISTIR 4583 (April 1993).

3. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 56 (1997).

4. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 85 (1997).

5. All shipments figures in the table areproduct datain current dollars. Product data reflect all products
classified in the named industry and sold by all industries. Most of the shipments figures in the table are
estimates since firm shipment data for 1994 were not uniformly available at the time of publication of the
referenced documents. Employment figures areindustry data. Industry data reflect all products and services
sold by establishments in the named industry, whether or not the products are classified in that industry. There
is some overlap in the products listed in the table. Some electronic products are included in the automotive
and aerospace industries. This overlap arises because there is no set of codes in the Standard Industrial
Classification (SIC) System, on which all of the figures in the table are based, that is devoted exclusively to
the electronics industry. The data on the electronics industry came from the1996 Electronic Market Data
Book, Electronic Industries Association, pp. 1-2 (1995). The other data came from theStatistical Abstract of
the United States 1995, U.S. Department of Commerce, Bureau of the Census, p. 896, pp. 908 and 916, p. 901,
and p. 917 (September 1995). For the automotive industry, the figures shown reflect both the motor-vehicle
bodies and supporting parts industries. For the petroleum-refining industry, the employment data for 1992 are
the most recent available and are thus used as an estimator for 1994.

6. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 82 (1997).

7. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 16 (1997).

8. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 16 (1997). The
electricity consumed per person is found by dividing the total electric consumption of the nation by its total
population. This value reflects more than the electricitydirectly consumed by each individual.

9. One watt-hour is the electric energy consumed at a rate of one watt for a period of one hour.

10. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 16 (1997).

11. B. A. Renz, "Emerging Business Opportunities in Power: Risks and Opportunities",IEEE Power Engineering
Review, p. 5 (November 1994).

12. G. Stein, "New U.S. Energy Legislation and Its Impact on Large Electricity Consumers",IEEE Power
Engineering Review, p. 20 (April 1993).

13. In traditional economic texts, societal impacts such as environment and safety are often referred to as
externalities, that is, costs of doing business which are not accounted for by the industry creating them.

14. K. Stahlkopf, "Powering the Future - A White Paper", (Electric Power Research Institute, Palo Alto, CA). No
date.

15. L. S. Hyman, "Power Industry Competition, Reengineering and Globalization",IEEE Power Engineering
Review, p. 4 (July 1994).

Measurement Support for the U.S. Electric-Power Industry / NIST



56 References

16. R. E. Disbrow, "New U.S. Energy Legislation and Its Impact on Electric Power Utilities",IEEE Power
Engineering Review, p. 17 (April 1993).

17. J. H. Sheridan, "Utilities: An Uncertain Future",Industry Week, p. 23 (March 20, 1995).

18. D. Southerland, "Regulators Issue Rules to Open Up Competition in Electricity Industry",The Washington Post
(April 1996).

19. J. Douglas, "Buying and Selling Power in the Age of Competition",IEEE Power Engineering Review, p. 12
(October 1994).

20. J. Douglas, "Measuring the Cost of Transmission Services",EPRI Journal, p. 8 (July/August 1995).

21. N. Burton, "UK System Post-Regulation",IEEE Power Engineering Review, p. 19 (June 1993).

22. W. Berry, "Competing in a Global Market: Changes in Transmission and Distribution",IEEE Power
Engineering Review, p. 4 (September 1994).

23. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 83 (1997).

24. H. H. Happ, "Transmission Access Raises Unresolved Economic Issues",IEEE Power Engineering Review,
p. 11 (August 1994).

25. "Perspectives on the Future: How is the Electric Utility Industry Changing? What Role Will Technology
Play? Will Collaborative Research Survive in a Competitive, Global Market?",IEEE Power Engineering
Review, p. 27 (June 1993).

26. H. Weinrich, "Changing Conditions in the Electric Power Industry: Facing Competitive Pressures",IEEE
Power Engineering Review, p. 4 (May 1994).

27. M. G. Morgan and S. Talukdar, "Nurturing R&D in the New Electric Power Regime",IEEE Spectrum,
Vol. 33, No. 7, pp. 32-33 (July 1996).

28. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 14 (1997).

29. L. S. Hyman, "Emerging Business Opportunities in Power: An Industry, in the Midst of Transition,
Contemplates a New Business Landscape",IEEE Power Engineering Review, p. 6 (November 1994).

30. C. K. Fulenwider, "Customer Choice in an Open Energy Marketplace",Conference Proceedings of Technical
Foundations for Customer Choice in the Electric Power Industry, Washington, D.C. (July 1-2, 1995).

31. S. R. Campbell, G. C. Stone, H. G. Sedding, G. S. Klempner, W. McDermid, and R. G. Bussey, "Practical
Online Partial Discharge Tests for Turbine Generators and Motors",IEEE Power Engineering Review(June
1994).

32. M. Subudhi, "Literature Review of Environmental Qualification of Safety-Related Electric Cables", BNL-
NUREG-52480, Brookhaven National Laboratory (April 1996).

33. P. Pillay and K. A. Fendley, "Contribution of Energy Efficient Motors to Demand and Energy Savings in the
Petrochemical Industry",IEEE Power Engineering Review(May 1995).

34. B. Moline, "Demand-Side Management in Public Power - The Quiet Revolution", American Public Power
Association (January 1992).

35. Electric Power Annual 1993, DOE/EIA-0348(93), p. 11 (December 1994).

Measurement Support for the U.S. Electric-Power Industry / NIST



References 57

36. J. Kunka, "Lighting City Hall",Public Power, p. 32 (November/December 1988).

37. V. A. Rabi, "Beneficial Electrification: Environmental Advantages of New Electricity Uses",IEEE Power
Engineering Review, p. 3 (November 1993).

38. T. P. Duguid and C. A. Mee, "The Drivers Behind the UK Experience of DSM",Power Engineering Journal,
p. 225 (October 1994).

39. B. A. Renz, "Power Engineering Trends and Challenges",IEEE Power Engineering Review, p. 20 (May 1993).

40. T. J. Hammons, "Artificial Intelligence in Power System Engineering",IEEE Power Engineering Review, p. 11
(February 1994).

41. P. K. Sen, "Understanding and Assessment of Transformer Overloading capability: An Application Guideline",
Proceedings of the 58th American Power Conference, Volume 58-II, ISBN 0097-2126, Library of Congress
catalog card number 39-5827, pp. 968-973, Chicago, IL (April 9-11, 1996).

42. J. M. Shearman, "Emerging Responses: How Utilities are Coping in the New Environment",IEEE Power
Engineering Review, p. 13 (November 1994).

43. P. Carter, "Regulating the Electricity Industry for Energy Efficiency",Power Engineering Journal, p. 218
(October 1994).

44. P. Kemesiz, "Southern’s Fast, Furious UK Takeover Signals Shift in Market Strategies",Electrical World, p.
37 (November 1995).

45. H. Weinrich, "Competing in a Global Market: Hurdling Trade Barriers",IEEE Power Engineering Review,
p. 3 (September 1994).

46. T. Moore, "Developing Countries on a Power Drive",EPRI Journal,p. 26 (July/August 1995).

47. E. L. Addison, "Competing in a Global Market: Going Global",IEEE Power Engineering Review, p. 7
(September 1994).

48. A. Viegas de Vasconcelos, "EC Electricity Supply Industry",IEEE Power Engineering Review, p. 7 (June
1993).

49. T. J. Hammons, "Latin American Power Policy",IEEE Power Engineering Review, p. 3 (June 1994).

50. T. S. Drolet and J. S. McConnach, "Benefits and Pitfalls of International Interconnections",IEEE Power
Engineering Review, p. 22 (July 1993).

51. D. E. Soffrin, "Utility Interconnections Avert Major Outages",IEEE Power Engineering Review, p. 40 (March
1994).

52. G. Lindahl, "Competing in a Global Market: ABB and the Global Market",IEEE Power Engineering Review,
p. 5 (September 1994)

53. "Global Market Projections for Generation Equipment",IEEE Power Engineering Review, p. 24 (April 1994).

54. J. A. Casazza, "Changing Conditions in the Electric Power Industry: Long-term Trends and Problems",IEEE
Power Engineering Review, p. 5 (May 1994).

55. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 43 (1997).

Measurement Support for the U.S. Electric-Power Industry / NIST



58 References

56. C. M. Meehan, "Emerging Business Opportunities in Power: Opportunities for Electric Utilities in
Telecommunications",IEEE Power Engineering Review, p. 18 (November 1994).

57. W. Coleman, "The Changing World of Environmental Management: Rapid Growth in Legislation and
Regulation and Its Impact on Electric Power Utilities",IEEE Power Engineering Review, p. 6 (July 1993).

58. Electricity and the Environment, (Edison Electric Institute, Washington, D.C., 1993).

59. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 29 (1997).

60. "Questions and Answers About Electric and Magnetic Fields Associated with the Use of Electric Power",
National Institute of Environmental Health Sciences (NIEHS) and U.S. Department of Energy, DOS/EE-0040
(January 1995).

61. L. G. Christophorou and R. J. Van Brunt, "SF6 Insulation: Possible Greenhouse Problems and Solutions",
National Institute of Standards and Technology, Report No. NISTIR 5685 (1995).

62. C. R. Heising, "Worldwide Reliability Surveys of High Voltage Circuit Breakers",IEEE Power Engineering
Review, p. 18 (May 1995).

63. R. Ramakumar and W. T. Jewell, "Photovoltaic Applications",IEEE Power Engineering Review, p. 17 (April
1994).

64. "Solar Power MakesTime’s Best of 1993 List",IEEE Power Engineering Review, p. 41 (March 1994).

65. Project 2000, American Public Power Association, Washington, DC, pp. 104-110 (June 1991).

66. L. Lamarre, "Diversification in the 90’s",EPRI Journal, p. 16 (July/August 1995).

67. J. Douglas, "Power Quality Solutions",IEEE Power Engineering Review, p. 3 (March 1994).

68. R. Nelson, M. Gernhardt, "Planning and Operating Ratings for Inverter-Based FACTS Power Flow
Controllers", Proceedings of the 58th American Power Conference, Chicago Vol. 58-1, pp. 1555-1561
(April 9-11, 1996).

69. "FACTS Controllers",IEEE Power Engineering Review, p. 31 (May 1994).

70. W. Wong, M. Bahrman, P. Lindberg, "SVC for the Deregulated Electric Power Industry",Proceedings of the
58th American Power Conference, Chicago, Vol. 58-1, p. 1548-1554 (April 9-11, 1996).

71. R. F. Giese, "A Worldwide Overview of Superconductivity Development Efforts for Utility Applications",
Proceedings of the 58th American Power Conference, Chicago, Vol. 58-1, pp. 77-83 (April 9-11, 1996).

72. E. Leung, A. Rodriguez, G. Albert, G. Dishaw, "Superconducting Fault Current Limiter for Utility
Applications",Proceedings of the 58th American Power Conference, Chicago, Vol. 58-1, p. 95-98 (April 9-11,
1996).

73. J. A. Dirks et al.,High-Temperature Superconducting Transformer Performance, Cost, and Market Evaluation,
Pacific Northwest Laboratories Report to the Department of Energy, PNL-7318 (September 1993).

74. R. C. Johnson, B. W. McConnell, S. P. Mehta, and M. S. Walker, "Status of Superconducting Power
Transformer Development",Proceedings of the 58th American Power Conference, Chicago, IL, Vol. 58-1, pp.
95-98 (April 9-11, 1996).

Measurement Support for the U.S. Electric-Power Industry / NIST



References 59

75. Ampacity is the current carrying capability of a wire under stated thermal conditions because it reflects a
thermal limit.

76. M. M. Rahman, Y. Wen, F. Marciano, C. Doench, "High Temperature Superconducting Transmission Cables -
The Future of Power Transmission in North America",Proceedings of the 58th American Power Conference,
Chicago, Vol. 58-1, pp. 84-88 (April 9-11, 1996).

77. R. Schiferl, B. Zhang, B. Shoykhet, D. Driscoll, A. Meyer, J. Zevchek, E. Johnson, B. Gamble, C. Prum,
J. Voccio, H. Picard, "High Temperature Superconducting Synchronous Motor Design and Test",Proceedings
of the 58th American Power Conference, Chicago, Vol. 58-1, pp. 99-104 (April 9-11, 1996).

78. J. R. Feldman, "Observability Needs in Power Systems", an EPRI background paper (1993).

79. 1997 Winter Meeting, Power Engineering Society, Institute of Electrical and Electronics Engineers, information
provided during the session of the "Current Operator Problems Working Group", chaired by J. Resek, held in
New York, New York (February 2-6, 1997).

80. Weiss, J., "Advanced Sensors for Power: What Next?", presented at the 58th American Power Conference,
Chicago, IL (April 9-11, 1996).

81. T. W. Cease, P. Johnston, "A Magneto-Optic Current Transducer",IEEE Transactions on Power Delivery,
Vol. 5, No. 2, pp. 548-555 (April 1990).

82. T. W. MacDougall, D. R. Lutz, R. A. Wandmacher, "Development of a Fiber Optic Current Sensor for Power
Systems",IEEE Transactions on Power Delivery, Vol. 7, No. 2, pp. 848-853 (April 1992).

83. E. Ulmer, Jr., "A High-Accuracy Optical Current Transducer for Electric Power Systems", IEEE Paper #89
TD 382-3 PWRD, presented at the IEEE/PES 1989 Transmission and Distribution Conference (April 2-7,
1989).

84. G. Rogers, "Demystifying Power System Oscillations",IEEE Computer Applications in Power, Vol. 9, No. 3,
pp. 30-35 (July, 1996).

85. H. Borsi, E. Gockenbach, and D. Wenzel, "Partial Discharge Recognition and Localization in Transformers
via Fuzzy Logic",Proceedings of the 1994 International Symposium on Electrical Insulation, pp. 233-6, IEEE
#94CH3445-4, Pittsburgh, PA (June 5-8, 1994).

86. J.-H. Lee, N. Hozumi, and T. Okamoto, "Discrimination of Phase-Shifted Partial Discharge Patterns by Neural
Network Using Standardization Method",Proceedings of the 1994 International Symposium on Electrical
Insulation, pp. 314-7, IEEE #94CH3445-4, Pittsburgh, PA (June 5-8, 1994).

87. C.F. Clark and T.L. Weaver, "Joint DOE/PMA Research Initiatives on Enhancing the Nation's Transmission
Capacity: Part 1 - Enhancing its Real-Time Operation and Control, and Part 2 - Higher Capacity Transmission
with Emphasis on High-Voltage Direct Current Technology". Presented to DOE Headquarters staff on January
31, 1992 and August 13, 1992.

88. W. A. Mittelstadt and others, "The DOE Wide Area Measurement System (WAMS) Project - Demonstration
of Dynamic Information Technology for the Future Power System", EPRI Conference on the Future of Power
Delivery, Washington, DC (April 9-11, 1996).

89. J.F. Hauer and others, "Value Engineering - A Dynamic Information Technology Package for Power System
Applications", 1995 Fault and Disturbance Analysis/Precise Measurements in Power Systems Conference,
Arlington, VA (November 8-10, 1995).

Measurement Support for the U.S. Electric-Power Industry / NIST



60 References

90. J.M. Miller and others, "Operating Problems with Parallel Flows, Committee Report",IEEE Transactions on
Power Systems, Vol. 6, No. 3, pp. 1024-34 (August 1991).

91. Peter A. Daly, "Overcoming Barriers to AM/FM SCADA Integration",Public Power, pp. 20-21
(November/December 1992).

92. 1992 Energy Policy Act.

93. Electricity Futures: America's Economic Imperative, Edison Electric Institute, ISBN-0-931032-27-X (1989).

94. "Industry and Government Co-Sponsored Workshop on Pre-Competitive Research in the Basic Sciences of
Commercial Light Sources", Alite 95 Workshop (February 8, 1995).

95. "Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures, Labeling and
Certification Requirements for Electric Motors: Proposed Rule",Federal Register, Part VII: Department of
Energy, Office of Energy Efficiency and Renewable Energy, 10CFR Part 431 (November 27, 1996).

96. "EPRI 1996 Research Development and Delivery Plan, Electric Machines and Drives Vector", Worldwide Web
page address http://www.epri.com/96plan/srdg/vect05.html (1996).

97. J. Douglas, "New Markets for Heat Pumps",EPRI Journal, Vol. 21, No. 3, pp. 30-39 (May/June 1996).

98. IEEE Standard Techniques for High Voltage Testing, IEEE Standard 4-1995 (1995).

99. "High Voltage Test Techniques, Part 2: Measuring Systems", International Standard 60-2:1994 (1994).

100. S. Pyke, "On-Line Transformer Gas Analysis",Proceedings of the 58th American Power Conference, Chicago,
Vol.58-1, pp. 289-292 (April 9-11, 1996).

101. John Reason, "On-Line Transformer Monitoring",Electrical World, pp. 19-26 (October 1995).

102. J. Berthold, T. Passel "Alloy 600 Corrosion Monitor Based on Fiber Optic strain Gage",Proceedings of the
58th American Power Conference, Chicago, Vol. 58-1, pp. 282-288 (April 9-11, 1996).

103. S. Okonek, "Breaker Diagnosis Via SF6 Analysis",EPRI Journal, Vol. 11, No. 6, p. 39 (November/December
1995).

104. M. S. Mashikian, R. Bansal, and R. B. Northrop, "Location and Characterization of Partial Discharge Sites
in Shielded Power Cables",IEEE Transactions on Power Delivery, Vol. 5, pp. 833-839 (1990).

105. Q. Su and R. E. James, "Analysis of Partial Discharge Pulse Distribution Along Transformer Windings Using
Digital Filtering Techniques",IEE Proceedings-C, Vol. 139, pp. 402-410 (1992).

106. M. Kurtz, J. F. Lyles, and G. C. Stone, "Application of Partial Discharge Testing to Hydrogenerator
Maintenance",IEEE Transactions on Power Apparatus and Systems, Vol. PAS-103, pp. 214\8-2157 (1984).

107. J. P. Vora, "Nuclear Plant Aging Research - An Overview (Electrical and Mechanical Components)", Office
of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission (1986).

108. R. J. Van Brunt, "Physics and Chemistry of Partial Discharge and Corona-Recent Advances and Future
Challenges",IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, No. 1, pp. 761-784 (1994).

109. Partial Discharge Measurements,International Electrotechnical Commission, IEC Standard, Publ. 270 (1981).

Measurement Support for the U.S. Electric-Power Industry / NIST



References 61

110. Guide for Partial Discharge Measurement in Liquid-Filled Power Transformers and Shunt Reactors, IEEE
Publication P454, ANSI C57.113-1987 (1987).

111. Transformers, Regulators and Reactors, NEMA Publication TR1-1974, part 9 (1974).

112. G. Zingales, "Present State and Prospects of Standardization on PD Measurements",IEEE Transactions on
Electrical Insulation, Vol. 28, pp. 902-904 (1993).

113. G. C. Stone, "Partial Discharge Measurements to Assess Rotating Machine Insulation Condition: A Survey",
Proceedings of the 1996 IEEE International Symposium on Electrical Insulation, Montreal (IEEE publication
96CH3597-2) pp. 19-23 (June 16-19, 1996).

114. B. H. Ward, "Digital Techniques for Partial Discharge Measurements - A Report on the Activities of the
Working Group on Digital Analysis of Partial Discharges",IEEE Transactions on Power Delivery, Vol. 7,
pp. 476-479 (1992).

115. Q. Su and G. H. Vaillancourt, "Computer-Based Multi-Terminal Partial Discharge Measurements of
Transformers",Proceedings of the 1996 IEEE International Symposium on Electrical Insulation, Montreal
(IEEE publication 96CH3597-2) pp. 61-64 (June 16-19, 1996).

116. W. L. Weeks and J. P. Steiner, "Instrumentation for the Detection and Location of Incipient Faults on Power
Cables",IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, pp. 2328-2335 (1982).

117. F. D. Martzloff, E. Simmon, J. P. Steiner, and R. J. Van Brunt,Detection of Incipient Defects in Cables by
Partial Discharge Signal Analysis, National Institute of Standards and Technology, Report No. NISTIR 4487
(1992).

118. A. Hariri, Z. Du, D. Sui, M. S. Masaikian, and D. Jordan, "Field Location of Partial Discharge in Power
Cables Using an Adaptive Noise Mitigating System",Proceedings of the 1996 IEEE International Symposium
on Electrical Insulation, Montreal (IEEE publication 96CH3597-2) pp. 121-125 (June 16-19, 1996).

119. V. Köpf and K. Feser, "Possibilities to Improve the Sensitivity of PD-Measurements by Using Digital Filters",
Proceedings of the International Symposium on Digital Techniques in HV Measurements, Toronto, Canada,
pp. 2-27 to 2-31 (1991).

120. P. von Glahn and R. J. Van Brunt, "Continuous Recording and Stochastic Analysis of PD",IEEE Transactions
on Dielectrics and Electrical Insulation, Vol. 2, pp. 590-601 (1995).

121. A. A. Mazroua, M. M. A. Salama, and R. Bartnikas, "PD Pattern Recognition with Neural Networks Using
the Multilayer Perception Technique",IEEE Transactions on Electrical Insulation, Vol. 28, pp. 1082-1089,
(1993).

122. R. Bozzo, C. Gemme, F. Guastavino, and L. Sciutto, "Diagnostic by Means of Neural Networks Having Inputs
Derived from Statistical Analysis of PD Patterns",Proceedings of the 1996 IEEE International Symposium on
Electrical Insulation, Montreal (IEEE publication 96CH3597-2) pp. 389-392 (June 16-19, 1996).

123. E. Gulski and A. Krivda, "Neural Networks as a Tool for Recognition of Partial Discharges",IEEE
Transactions on Electrical Insulation, Vol. 28, pp. 984-1001 (1993).

124. Savio, Leo J., "Power Transformer Diagnostics, an Overview", presented at the EPRI Substations Diagnostics
Conference (November, 1993).

125. "EPRI 1996 Research Development and Delivery Plan, Power Delivery Group, Substations Target",
Worldwide Web page address http://www.epri.com/96plan/pdg/ssos/ssos1.html.

Measurement Support for the U.S. Electric-Power Industry / NIST



62 References

126. IEEE Guide for Loading Mineral-Oil-Immersed Power Transformers Up to and Including 100 MVA w/55°C
or 65 °C Average Winding Rise, IEEE/ANSI C57.92-1981 (reaffirmed January, 1992).

127. IEEE Guide for Loading Mineral-Oil-Immersed Overhead and Pad-Mounted Distribution Transformers Rated
at 500 kVA and Less w/55°C or 65 °C Average Winding Rise, IEEE/ANSI C57.91-1981 (reaffirmed January,
1992).

128. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 15 (1997).

129. Statistical Yearbook of the Electric Utility Industry 1995, Edison Electric Institute, p. 44 (1997).

130. R. Pospisil, "Emission Trading Comes of Age as a Strategic Tool",Electrical World, p. 47 (March 1996).

131. "SF6 and the Global Atmosphere",Electra, Vol. 164, p. 121 (1996).

132. L. G. Christophorou and R. J. Van Brunt, "SF6 Insulation: Possible Greenhouse Problems and Solutions",
National Institute of Standards and Technology, Report No. NISTIR 5685, and references therein (July 1995).

133. "Disposal of SF6 in Standards",IEEE Standards Bearer(January 1996).

134. C. P. Rinsland, M. R. Biunson, M. C. Abrams, L. L. Lowes, R. Zander, and E. Mahieu, "ATMOS/ATLAS 1
Measurements of Sulfur Hexafluoride (SF6) in the Lower Stratosphere and Upper Troposphere",Journal of
Geophysical Research, Vol. 98, pp. 20491-20494 (1993).

135. M. Maiss and I. Levein, "Global Increase of SF6 Observed in the Atmosphere",Geophysical Research Letter,
Vol. 21, pp. 569-572 (1994).

136. R. A. Morris, T. A. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon, and G. Reid, "Effect of Electron and
Ion Reactions on Atmospheric Lifetimes of Fully Fluorinated Compounds",Journal of Geophysical Research,
Vol. 100, pp. 1287-1294 (1995).

137. L. G. Christophorou and R. J. Van Brunt, "SF6/N2 Mixtures - Basic and HV Insulation Properties",IEEE
Transactions on Dielectrics and Electrical Insulation, Vol. 2, p. 952 (1995).

138. K. L. Stricklett, editor, "Advanced Components for Electric and Hybrid Electric Vehicles", National Institute
of Standards and Technology, NIST Special Publication 860 (March 1994).

139. T. Cackette, "California’s Zero Emission Vehicle Requirements and Implications for Hybrid Electric Vehicles",
in Advanced Components for Electric and Hybrid Electric Vehicles, K.L. Stricklett editor, National Institute
of Standards, NIST Special Publication 860, p. 3-18, 1993.

140. D. Nanda, personal communication.

141. L. Lamarre, "Mowing Down Pollution",EPRI Journal, p. 16 (March/April 1996).

142. N. Wertheimer and E. Leeper, "Electrical Wiring Configurations and Childhood Cancer",American Journal
of Epidemiology, Vol. 109, pp. 273-284 (1979).

143. "Electric and Magnetic Fields and Cancer: An Update", CIGRE WG 36.06 Report,Electra, No. 161,
pp. 132-141 (August, 1995).

144. M. Misakian and C. Fenimore, "Distributions of Measurement Error for Three-Axis Magnetic Field Meters
During Measurements Near Appliances",IEEE Transactions on Instrumentation and Measurements, Vol. 45,
No. 1, pp. 244-249 (February 1996).

Measurement Support for the U.S. Electric-Power Industry / NIST



References 63

145. B. R. McLeod et al., "Electromagnetic Fields Induced in Helmholtz Aiding Coils Inside Saline-Filled
Boundaries",Bioelectromagnetics, Vol. 4, pp. 357-370 (1983).

146. M. Misakian and W. T. Kaune, "Optimal Experimental Design for In Vitro Studies with ELF Magnetic Fields",
Bioelectromagnetics, Vol. 11, pp. 251-255 (1990).

147. M. Misakian, "In Vitro Exposure Parameters with Linearly and Circularly Polarized ELF Magnetic Fields",
Bioelectromagnetics, Vol. 12, pp. 377-381 (1991).

148. H. Bassen et al., "ELF In Vitro Exposure System for Inducing Uniform Electrical and Magnetic Fields in Cell
Culture Medium",Bioelectromagnetics, Vol. 13, pp. 183-198 (1992).

149. M. A. Stuchly and W. Xi, "Modeling Induced Currents in Biological Cells Exposed to Low-Frequency
Magnetic Fields",Physics in Medicine and Biology, Vol. 39, pp. 1319-1330 (1994).

150. G. Schwarz, "A Theory of the Low-Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte
Solution",Journal of Physical Chemistry, Vol. 66, pp. 2636-2642 (1962).

151. S. M. Bezrukov and J. J. Kasianowicz, "Current Noise Reveals Protonation Kinetics and Number of Ionizable
Sites in an Open Protein Ion Channel",Physical Review Letters, Vol. 70, pp. 2352-2355 (1993).

152. D. L. Miller, "Magnetically Induced Electric Fields Measured in Rats and Compared to a Homogeneous Rat
Model", in Electricity and Magnetism in Biology and Medicine, Editor M. Blank (San Francisco Press, CA,
1993), pp. 563-565.

153. O. P. Ghandhi, "Some Numerical Methods for Dosimetry: Extremely Low Frequencies to Microwave
Frequencies,Radio Science, Vol. 30, pp. 161-177 and references therein (1995).

154. P. C. Gailey, "Current-Distribution Tomography: A New Technique for Determination of Internal Current-
Density Distributions", inElectricity and Magnetism in Biology and Medicine, Editor M. Blank (San Francisco
Press, CA, 1993), pp. 578-580.

155. P. C. Gailey, "Current Distribution Tomography for Determination of Internal Current Density Distributions",
9th Annual Review of Progress in Applied Computational Electromagnetics, Naval Postgraduate School,
Monterey, CA (March 22-26, 1993).

156. D. S. Dorr, T. M. Gruzs, J. J. Stanislawski, "Interpreting Recent Power Quality Surveys to Define the
Electrical Environment", Power Quality Solutions ’95, PowerSystems World ’95 Conference and Exhibit, Long
Beach, CA, pp. 60-67 (September 9-15, 1995).

157. C. J. Melhorn, M. F. McGranaghan, "Interpretation and Analysis of Power Quality Measurements", Power
Quality Solutions ’95, PowerSystems World ’95 Conference and Exhibit, Long Beach, CA, pp. 72-85
(September 9-15, 1995).

158. N. Hingorani, "Introducing Custom Power",IEEE Spectrum, pp. 41-48 (June 1995).

159. F. A. M. Rizk, "Modeling of Transmission Line Exposure to Direct Lightning Stroke",IEEE Transactions on
Power Delivery, Vol. 5, pp. 1983-1997 (1990); "Modeling of Lightning Incident to Tall Structures, Part II
Application", IEEE Winter Power Engineering Society Meeting, Columbus, Ohio, Paper 93 WM08-0
(January 31, 1993).

160. R. J. Van Brunt, T. L. Nelson, and S. L. Firebaugh, "Early Streamer Emission Lightning Protection Systems -
Literature Survey and Technical Evaluation", Report to the National Fire Protection Research Foundation,
National Institute of Standards and Technology, Report No. NISTIR 5621 (1995).

Measurement Support for the U.S. Electric-Power Industry / NIST



64 References

161. G. Berger, "Early Streamer Emission Lightning Rod Conductor", Proceedings of the 1992 International
Aerospace and Ground Conference on Lightning and Static Electricity, Atlantic City, NJ, pp. 38:1-9
(October 6, 1992).

162. R. Itatani, M. Kubo, M. Jinno, G. Nagano, Y. Sonoi, and T. Nagai, "Fundamental Research on Laser Triggered
Lightning Using a New Technique",Proceedings 8th International Symposium on High Voltage Engineering,
Vol. 3, IEEE Japan, pp. 301-304 (August 23, 1993).

163. K. P. Heary, A. Z. Chaberski, A. Z. Gumley, J. R. Gumley, F. Richens, and J. H. Moran, "An Experimental
Study of Ionizing Air Terminal Performance",IEEE Transactions on Power Delivery, Vol. 4, pp. 1175-1184
(1989).

164. B. Hutzler, "Lightning Simulation", Electricité de France,Bulletin de la Direction des Etudes et Recherches,
Series B: Reseaux Électrique et Materiels Électriques, Vol. 0, No. 3, pp. 31-40 (1988); "Comparison of
lightning and long spark",Revue Generale de l'Electricité, No. 3, pp. 12-17 (1989).

165. National Electric Code, Section NFPA70, National Fire Protection Association of Quincy, MA (1996).

166. P. S. Filipski, R. Arseneau, "Behavior of Wattmeters and Watthour Meters Under Distorted Waveform
Conditions", IEEE Tutorial Course on Nonsinusoidal Situations: Effects on the Performance of Meters and
Definitions of Power, IEEE #90EH0327-7-PWR, pp. 13-22 (1990).

167. D. Southerland, "Power Knocked Out to 2 Million in West; Cause Is Unknown",The Washington Post,
p. A-20 (July 3, 1996).

168. EPRI 1996 Research Development and Delivery Plan, Power Delivery Group, Distribution Target, Worldwide
Web page address http://www.epri.com/96plan/pdg/dist/dist1.html.

169. Measurements for Competitiveness in Electronics, First Edition, Electronics and Electrical Engineering
Laboratory, National Institute of Standards and Technology, NIST Report No. NISTIR 4583 (April 1993).

170. Possible Health Effects of Exposure to Residential Electric and Magnetic Fields, National Research Council,
National Academic Press, Washington, DC (1996).

Measurement Support for the U.S. Electric-Power Industry / NIST






